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Abstract

In this article, we introduce the σ-resolvent sampling kernels associated with an un-
bounded symmetric operator with compact resolvent defined on a Hilbert space H, where
σ denotes an entire H-valued function. Related to a σ-resolvent sampling kernel we
construct by duality a reproducing kernel Hilbert space of entire functions Hσ where a
sampling formula holds. We prove that any function obtained by duality through a gen-
eralized Lagrange-Kramer sampling kernel is uniformly approximated in compact sets of
C by functions defined through σ-resolvent sampling kernels. In particular, we study the
obtained spaces for σ constant from an algebraic and topological point of view.
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1 Statement of the problem

For the past few years a significant mathematical literature on the topic of sampling theorems
associated with differential or difference problems has flourished [2, 5, 6, 8, 9, 10]. See also
[16] and the references therein. In its turn, we might consider the Weiss-Kramer sampling
theorem as the leitmotiv of all these results [12, 15]. Roughly speaking, the common situation
for these sampling problems is the following:

Let f be a function defined on C by f(z) =
∫
I F (x) K(x, z) dx, F ∈ L2(I), (or f(z) =∑

n F (n) K(n, z), F ∈ `2 ). The kernel K, which belongs to L2(I) (or `2) for each fixed z ∈ C,
satisfies the differential (difference) equation appearing in a differential (difference) problem
(P ) which has the sequence of eigenvalues {zn}. Moreover, whenever we substitute in K the
spectral parameter z by {zn} we obtain the sequence of orthogonal eigenfunctions associated
with (P ) which constitutes an orthogonal basis for L2(I) (`2). Under these circumstances, f
is an entire function which can be recovered from its samples {f(zn)} by means of a sampling
formula f(z) =

∑
n f(zn) Sn(z), where the sampling functions {Sn} are given by Sn(z) =

‖K(·, zn)‖−2 〈K(·, z),K(·, zn)〉 (the inner product in L2(I) or `2).
∗E-mail:agarcia@math.uc3m.es
†E-mail:mahm@mat.upm.es
‡E-mail:aportal@math.uc3m.es
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Many often, the sampling functions can be written as Lagrange-type interpolation func-
tions Sn(z) = G(z)/((z − zn)G′(zn)), where G is an entire function having simple zeros at
{zn}. In this case, for a fixed z ∈ C, the expansion of the kernel K(x, z) (K(n, z)) in the
orthogonal basis {K(x, zn)} ({K(m, zn)}n) has the form

K(x, z) =
∑

n

An G(z)
z − zn

K(x, zn)
‖K(·, zn)‖

(
K(m, z) =

∑
n

An G(z)
z − zn

K(m, zn)
‖K(·, zn)‖

)
,

where the coefficients are entire functions and
∑

n

∣∣An G(z)
z−zn

∣∣2 = ‖K(·, z)‖2 is bounded in
compact sets of C (the An are constants). Roughly speaking, the form assumed for the
coefficients comes out, in general, by applying the Green’s formula (or Lagrange’s formula)
associated with the differential or difference problem. In these circumstances we say that K
is a Lagrange-Kramer sampling kernel. For a characterization of the Kramer sampling kernels
giving a sampling formula written as a Lagrange-type interpolation series see Ref. [7].

In this work, we introduce the σ-resolvent sampling kernels associated with a symmetric
operator with compact resolvent defined on a Hilbert space H, where σ denotes an entire
H-valued function. Related to a σ-resolvent sampling kernel we construct by duality a re-
producing kernel Hilbert space of entire functions Hσ where a sampling formula holds: The
σ-sampling theorem. In this setting, we prove that any function obtained through a gen-
eralized Lagrange-Kramer sampling kernel, a generalization of a Lagrange-Kramer sampling
kernel, is uniformly approximated in compact sets of C by functions defined through σ-
resolvent sampling kernels. Finally, we confine ourselves to the particular case where σ is a
constant function. We study some algebraic properties of the associated spaces Hσ, and also
some topological properties for the topology of uniform convergence in compact subsets of C.
The corresponding results for the classical Paley-Wiener spaces are exhibited.

2 Sampling theory associated with a resolvent kernel

In this Section we introduce the sampling resolvent kernels associated with a symmetric
operator with compact resolvent, and the corresponding sampling theory.

2.1 Preliminaries on symmetric operators with compact resolvent

Let H be a complex Hilbert space and let A : D(A) ⊂ H → H be a symmetric (formally self–
adjoint) linear operator, densely defined on H. Assume that there exists an inverse operator
T = A−1, compact and defined on H. We know from the spectral theorem for symmetric
compact operators defined on a Hilbert space that T has discrete spectrum [14]. Moreover,
if {µn}∞n=1 is the sequence of eigenvalues of T , then limn→∞ |µn| = 0. We may assume that
|µ1| ≥ |µ2| ≥ . . . ≥ |µn| ≥ . . . The eigenspace associated with each eigenvalue µn is finite
dimensional. Set kn = dim ker(µnI − T ) < ∞. Note that 0 is not an eigenvalue of T , so
the sequence {en}∞n=1 of eigenvectors of T is a complete orthonormal system (applying the
Gram–Schmidt method in each eigenspace) of H. The sequences {zn = µ−1

n }∞n=1 and {en}∞n=1

are, respectively, the sequence of eigenvalues and the sequence of associated eigenvectors of
the operator A. Since limn→∞ |µn| = 0, we have 0 < |z1| ≤ |z2| ≤ . . . ≤ |zn| ≤ . . . and
limn→∞ |zn| = ∞. We can arrange the sequence of eigenvectors of A as {(en,i)kn

i=1}∞n=1, where
n ∈ N and i = 1, 2, . . . , kn.

The resolvent operator Rz := (z I − A)−1 is meromorphic in C with simple poles at
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{zn}∞n=1. For each x ∈ H the following expansion holds in H [14]:

Rz(x) =
∞∑

n=1

(
1

z − zn

kn∑
i=1

〈x, en,i〉H en,i

)
. (1)

From now on, P will denote an entire function having simple and real zeros at {zn}∞n=1,
and taking real values on R. In the particular case that the exponent of convergence of the
sequence {zn}∞n=1 is finite, i.e.,

η = inf
{

α > 0 |
∞∑

k=1

1
|zk|α

< +∞
}

< ∞ ,

we can take P to be the canonical product associated with the sequence of eigenvalues {zn}∞n=1

given by

P (z) =

{∏∞
n=1 (1− z

zn
) exp(

∑p
i=0

1
i (

z
zn

)i) if p ≥ 1∏∞
n=1(1−

z
zn

) if p = 0
(2)

where p is the smallest non negative integer larger than η − 1.

More information about the function P associated with a particular differential or differ-
ence problem, can be found, for instance, in [2, 6, 8, 10, 16].

Given an entire H-valued function σ : C −→ H, we define the following H-valued function:

Kσ : C −→ H
z −→ Kσ(z) := P (z)Rz[σ(z)] .

(3)

Since σ is an entire function, and the resolvent operator is meromorphic with simple poles
at {zn}∞n=1, the next Lemma, whose proof is an easy exercise, allows us to assert that Rz[σ(z)]
is a meromorphic H-valued function with simple poles at {zn}∞n=1.

Lemma 1 Let H be a Hilbert space and let B(H) be the space of the bounded operators on
H. Assume that the maps A : U −→ B(H) and σ : U −→ H are holomorphic on a domain U
of the complex plane C. Then, the mapping F : U −→ H defined by F (z) = [A(z)](σ(z)) is
holomorphic in U , and F ′(z) = [A′(z)](σ(z)) + [A(z)](σ′(z)) for each z ∈ U .

Moreover, since P has simple zeros at {zn}∞n=1 we finally obtain that Kσ is an entire
H-valued function.

Definition 1 The entire H-valued function Kσ associated with an entire H-valued function
σ will be called a σ-resolvent sampling kernel.

Using the expansion (1), one obtains the following expansion for Kσ(z), z ∈ C,

Kσ(z) =
∞∑

n=1

P (z)
z − zn

kn∑
i=1

〈σ(z), en,i〉Hen,i . (4)

In particular, Kσ(zm) = P ′(zm)
∑km

i=1〈σ(zm), em,i〉H em,i.
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2.2 The resulting sampling theory

Let Kσ be the σ-resolvent sampling kernel associated with an entire H-valued function σ.
Define the mapping Tσ by

Tσ : H −→ CC

x −→ Tσ(x) ,
(5)

where [Tσ(x)](z) := 〈Kσ(z), x〉H, z ∈ C. Note that, for each x ∈ H, the function Tσ(x) is an
entire function. The mapping Tσ is anti-linear, i.e.,

Tσ(αx + βy) = αTσ(x) + βTσ(y) for all x, y ∈ H and α, β ∈ C .

We denote by Hσ the range space of Tσ, i.e., Hσ := Tσ(H). Endowing Hσ with the norm

‖f‖Hσ := inf{‖x‖H : f = Tσ(x)} ,

we obtain a Hilbert space of entire functions [11, 13]. In fact, the infimum is actually reached:
There exists x̃ = P(ker Tσ)⊥(x), the orthogonal projection onto (kerTσ)⊥ of any x ∈ H such
that Tσ(x) = f , satisfying ‖f‖Hσ = ‖x̃‖H. Thus, the anti-linear mapping Tσ is continuous
and satisfies ‖Tσ‖ ≤ 1.

Moreover, the space Hσ is a reproducing kernel Hilbert space (RKHS hereafter), since
the point-evaluation functional Ez(f) := f(z) is continuous for each z ∈ C. Its reproducing
kernel kσ is given by [11]

kσ(z, ω) = 〈Kσ(z),Kσ(ω)〉H = P (z) P (ω)〈Rz(σ(z)), Rω(σ(ω))〉H .

Recall that for each ω ∈ C the function lω defined as lω(z) := kσ(z, ω) belongs to Hσ, and
the reproducing property holds

f(ω) = 〈f, lω〉Hσ = 〈f, kσ(·, ω)〉Hσ for ω ∈ C and f ∈ Hσ .

For a function f ∈ Hσ such that f(zn) 6= 0 for any eigenvalue zn, the following expansion
holds:

Theorem 1 Let f = Tσ(x) be in Hσ such that f(zn) 6= 0 for all n ∈ N. Then, f admits the
expansion as the series:

f(z) =
∞∑

n=1

f(zn)
Fn[f ](z)
Fn[f ](zn)

P (z)
(z − zn)P ′(zn)

, z ∈ C , (6)

where Fn[f ](z) :=
∑kn

i=1〈σ(z), en,i〉H〈x, en,i〉H depends on f . The convergence of the series
in (6) is absolute and uniform in compact subsets of C. Furthermore, it converges in the
Hσ-norm sense.

Proof: Given f ∈ Hσ, consider x ∈ H such that f = Tσ(x). Expanding x with respect to
the orthonormal basis {(en,i)kn

i=1}∞n=1 we have

x =
∞∑

n=1

kn∑
i=1

〈x, en,i〉H en,i in H .

Applying the continuous anti-linear mapping Tσ we obtain

f = Tσ(x) =
∞∑

n=1

kn∑
i=1

〈x, en,i〉H Tσ(en,i) in Hσ . (7)

4



As a consequence of the RKHS theory, the convergence in the Hσ-sense implies pointwise
convergence for any z ∈ C. Now, for each n ∈ N, Tσ(en,i) is given by

[Tσ(en,i)](z) = 〈Kσ(z), en,i〉H =
P (z)〈σ(z), en,i〉H

z − zn
, z ∈ C \ {zn} ,

and [Tσ(en,i)](zn) = P ′(zn)〈σ(zn), en,i〉H. Consequently, (7) can be written as

f(z) =
∞∑

n=1

P (z)
z − zn

Fn[f ](z) , z ∈ C \ {zn} . (8)

Since Kσ(zn) = P ′(zn)
∑kn

i=1 〈σ(zn), en,i〉H en,i, we obtain

f(zn) = 〈Kσ(zn), x〉H = P ′(zn) Fn[f ](zn) . (9)

Substituting (9) in (8) we obtain (6) since Fn[f ](zn) 6= 0 for all n ∈ N.
Notice that the orthonormal basis {(en,i)kn

i=1}∞n=1 is, in particular, an unconditional basis.
Therefore, we deduce that the series in (6) is pointwise unconditionally convergent and hence,
absolutely convergent. The uniform convergence is a standard result in the setting of the
RKHS theory [13] since ‖Kσ(·)‖H is bounded (actually it is continuous) in compact subsets
of C. �

The mapping Tσ is injective if and only if Tσ an isometry, or equivalently, if and only if
the set {Kσ(z)}z∈C is complete in H [11, 13]. In particular, whenever kn = 1 for all n ∈ N and
〈σ(zn), en〉H 6= 0 for all n ∈ N, we have that the anti-linear mapping Tσ is a bijective isometry
between H and Hσ since {Kσ(zn) = P ′(zn)〈σ(zn), en〉Hen}∞n=1 is a complete sequence in H.
In this case, {Tσ(en)}∞n=1 is an orthonormal basis in Hσ, and (6) is an orthonormal expansion
in Hσ. More specifically, the following sampling theorem which will be referred throughout
the paper as the σ-sampling theorem, holds:

Corollary 1 (σ-sampling theorem) Assume that 〈σ(zn), en〉H 6= 0 for all n ∈ N. Any
function f ∈ Hσ can be expanded as the sampling series

f(z) =
∞∑

n=1

f(zn)
〈σ(z), en〉H
〈σ(zn), en〉H

P (z)
(z − zn)P ′(zn)

, z ∈ C . (10)

The convergence of the series in (10) is absolute and uniform in compact subsets of C.

Notice that whenever 〈σ(zm), em〉H = 0 for all m ∈ I(σ) ⊂ N, the RKHS Hσ will be
isometrically isomorphic to the closed subspace in H spanned by {en}n/∈I(σ). If for any m ∈
I(σ) we suppose that 〈σ(z), em〉H = 0 for all z ∈ C, formula (10) still remains valid for all
n /∈ I(σ).

Definition 2 We denote by Σ the set of all entire H-valued functions σ such that 〈σ(zn), en〉H 6=
0 for all n ∈ N, or such that 〈σ(z), em〉H = 0 for all z ∈ C whenever m ∈ I(σ). We define
HΣ as the set ∪σ∈ΣHσ

Notice that if we take the function σ(z) := a ∈ H constant, independently of the multi-
plicity of the eigenvalues of the operator A, we have

Fn[f ](z)
Fn[f ](zn)

= 1 , for any f ∈ Hσ .

Therefore, the following sampling theorem holds:
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Corollary 2 Consider the entire H-valued function defined by Ka(z) := P (z)Rz(a). For a
fixed x ∈ H, the function f given by f(z) = 〈Ka(z), x〉H, z ∈ C, can be recovered from its
samples {f(zn)}∞n=1 through the Lagrange-type interpolation series

f(z) =
∞∑

n=1

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C .

The convergence of the series is absolute and uniform in compact subsets of C.

Sampling theorems associated with a sampling kernel defined through an expression like
(1) have been obtained in [17].

3 Approximation property derived from the σ-sampling the-
orem

In this Section we enlarge the class of sampling kernels by introducing the generalized
Lagrange-Kramer sampling kernels. These kernels generalize most of the sampling kernels
associated with differential or difference problems. Throughout this Section we assume that
kn = 1 for each n ∈ N.

Let Ψ : C \ {zn}∞n=1 −→ H be a function whose expansion in the orthonormal basis
{en}∞n=1

Ψ(z) =
∞∑

n=1

wn(z)
z − zn

en ,

verifies the two following conditions:

i) For each n ∈ N, wn(z) is an entire function such that wn(zn) 6= 0.

ii) For each compact set K ⊂ C there exists a constant CK such that

sup
z∈K

∞∑
n=1

∣∣∣∣P (z) wn(z)
z − zn

∣∣∣∣2 ≤ CK ,

for some entire function P having simple zeros at {zn}∞n=1.

Notice that condition ii) is independent of the chosen entire function P . Furthermore, the
choice of {wn}∞n=1 will allow a variety of asymptotic behaviours for the sequence {zn}∞n=1.

Definition 3 Let Ψ be a function as above. The kernel KΨ defined as

KΨ : C −→ H
z −→ KΨ(z) := P (z) Ψ(z) ,

is said to be a generalized Lagrange-Kramer sampling kernel.

Lemma 2 Any generalized Lagrange-Kramer sampling kernel KΨ defines an entire H-valued
function.

Proof: Using Theorem 1.1 in [14, p. 267] this is equivalent to proving that, for each x ∈ H,
the function defined as g(z) := 〈KΨ(z), x〉H, which reads as

g(z) =
∞∑

n=1

P (z) wn(z)
z − zn

〈en, x〉H ,
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is an entire function. From the Cauchy-Schwarz inequality and condition ii) we obtain that
the above series is uniformly bounded in compact subsets of C. By using the classical Montel
theorem [4] we obtain a subsequence that converges uniformly in compact subsets to an entire
function which necessarily coincides with g. �

For a fixed generalized Lagrange-Kramer sampling kernel KΨ we consider the set of func-
tions

HKΨ
:=

{
f : C −→ C | f(z) := 〈KΨ(z), x〉H : x ∈ H

}
.

Proceeding as in Section 3, we can prove that HKΨ
is a RKHS of entire functions. It is worth

remarking that, by using the same technique as in Theorem 6, the sampling formula

f(z) =
∞∑

m=1

f(zm)
wm(z)

wm(zm)
P (z)

(z − zm)P ′(zm)
, z ∈ C ,

holds in HKΨ
. This sampling formula justifies the name of generalized Lagrange-Kramer

sampling kernel for KΨ. The main goal in this Section is to prove, using the σ-sampling
theorem (see Corollary 1), that any function f ∈ HKΨ

can be approximated, uniformly in
compact subsets of C, by a sequence of entire functions in HΣ (see Definition 2). For the sake
of completeness we include the statement of the Moore-Smith theorem which will be needed
later. Its proof can be found in [3, p. 236]:

Lemma 3 Let M be a complete metric space with metric ρ, and let {xn,m}, n, m ∈ N, be
given. Assume there are sequences {yn}, {zm} in M such that

1. limn→∞ ρ(xn,m, zm) = 0 uniformly in m, and

2. For each n ∈ N, limm→∞ ρ(xn,m, yn) = 0.

Then there is x ∈ M such that

lim
m→∞

lim
n→∞

ρ(xn,m, x) = lim
n→∞

lim
m→∞

ρ(xn,m, x) = lim
m,n→∞

ρ(xn,m, x) = 0 .

The aforesaid approximation property reads as follows:

Theorem 2 Any function f in HKΨ
is the uniform limit in compact subsets of C of a

sequence {fn}∞n=1 in HΣ.

Proof: Let f(z) = 〈KΨ(z), x〉H be a function belonging to HKΨ
obtained from a fixed x ∈ H.

For each n ∈ N, consider σn : C −→ H which satisfies

〈σn(z), ek〉 =

{
wk(z) si k ≤ n

0 si k > n.

Taking Kn(z) := Kσn(z), and having in mind that

KΨ(z) =
∞∑

k=1

P (z) wk(z)
z − zk

ek ,

we have that Kn(z) −→ KΨ(z) as n →∞ in H. Now we consider the sequence in HΣ given
by fn(z) := 〈Kn(z), x〉H. The pointwise convergence fn(z) → f(z) as n → ∞ in C is a
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straightforward consequence of the strong convergence of the kernels in H. The σ-sampling
theorem gives the sampling expansion

fn(z) =
n∑

k=1

fn(zk)
〈σn(z), ek〉H
〈σn(zk), ek〉H

P (z)
(z − zk)P ′(zk)

.

Next we prove that

lim
n→∞

n∑
m=1

fn(zm)
[
〈σn(z), em〉H
〈σn(zm), em〉H

P (z)
(z − zm)P ′(zm)

]
=

∞∑
m=1

f(zm)
[

wm(z)
wm(zm)

P (z)
(z − zm)P ′(zm)

]
uniformly in compact subsets of C. To interchange the limit and the series we use the Moore-
Smith theorem. To this end, consider

xm,n(z) =
n∑

k=1

fm(zk)
[
〈σm(z), ek〉H
〈σm(zk), ek〉H

P (z)
(z − zk)P ′(zk)

]
,

where z ∈ C. We have to prove that xm,n(z) → fm(z) as n → ∞, uniformly in compact
subsets of C and uniformly in m. Indeed,

∣∣xm,n(z)− fm(z)
∣∣2 ≤ ‖KΨ(z)‖2

H

∞∑
k=n+1

|〈x, ek〉H|2 ,

and ‖KΨ(z)‖H is uniformly bounded in compact subsets of C.
On the other hand,

xm,n(z) −→
n∑

k=1

f(zk)
[

wk(z)
wk(zk)

P (z)
(z − zk)P ′(zk)

]
, as m →∞ , (11)

uniformly in compact subsets of C. To prove the uniform convergence, take m > n. We can
write

n∑
k=1

P (z)
(z − zk)P ′(zk)

[
fm(zk)

〈σm(z), ek〉H
〈σm(zk), ek〉H

− f(zk)
wk(z)
wk(zk)

]
=

n∑
k=1

[fm(zk)− f(zk)]
wk(z)
wk(zk)

P (z)
(z − zk)P ′(zk)

(12)

Now, given a compact K and ε > 0, there exist m1,m2, . . . ,mn ∈ N such that

|fm(zk)− f(zk)| <
ε

nRK
, k = 1, . . . , n ,

for each m ≥ max{m1,m2, . . . ,mn}, where

RK = sup
1≤k≤n

sup
z∈K

{∣∣∣∣ P (z)
(z − zk)P ′(zk)

wk(z)
wk(zk)

∣∣∣∣} ,
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and, as a consequence of (12), we obtain the uniform convergence in (11). Finally,the Moore-
Smith theorem gives

f(z) =
∞∑

m=1

f(zm)
wm(z)

wm(zm)
P (z)

(z − zm)P ′(zm)
,

and that fn → f uniformly in compact subsets of C which concludes the proof. �

The generalized Lagrange-Krmaer sampling kernel class enlarges the σ-resolvent sampling
kernel class. Indeed, let A be a Hilbert-Schmidt operator. The sequence {1/zn}∞n=1 of its
eigenvalues is in `2(N). As a consequence, the H-valued function given by

K(z) :=
∞∑

n=1

P (z)
z − zn

en ,

defines a Lagrange-Kramer sampling kernel since the series
∞∑

n=1

|P (z)|2

|z − zn|2

is uniformly bounded in compact subsets of C. Notice that this kernel K does not coincide
with Kσ for any σ ∈ Σ.

Our next goal is to prove an inverse result for Theorem 2 in the following sense: If
every function f defined by means of a kernel K can be uniformly approximated in compact
subsets of C through a sequence of functions {fm}∞m=1, associated with a sequence of kernels
{Kσm}∞m=1 where σm ∈ Σ, then K is a generalized Lagrange-Kramer sampling kernel.

First, we need the following Lemma which proof is similar to those of Lemma 2:

Lemma 4 A function K : C −→ H defines an entire H-valued function if and only if, for
each z ∈ C the expansion of K(z) in the orthonormal basis {en}∞n=1

K(z) =
∞∑

n=1

Gn(z) en

satisfies the following conditions:

(a) For each n ∈ N, Gn is an entire function, and

(b) ‖K(z)‖2 =
∑∞

n=1 |Gn(z)|2 is uniformly bounded on compact subsets of C.

Theorem 3 Let K : C −→ H be a kernel satisfying K(zn) 6= 0 for all n ∈ N. Assume
that there exists a sequence of kernels {Kσm}∞m=1, where σm ∈ Σ, such that for any function
f defined in C as f(z) := 〈K(z), x〉H for some x ∈ H, the sequence of functions {fm}∞m=1

defined by fm(z) = 〈Kσm(z), x〉H verifies that fm −→ f as m → ∞, uniformly in compact
subsets of C. Then, K is a generalized Lagrange-Kramer sampling kernel.

Proof: The analytic convergence theorem assures that K is an entire function. As a con-
sequence of Lemma 4, the coefficients Gn of its expansion K(z) =

∑∞
n=1 Gn(z) en are entire

functions, and the series
∑∞

n=1 |Gn(z)|2 is uniformly bounded in compact subsets of C.
On the other hand, for each z ∈ C, Kσm(z) −→ K(z) as m → ∞, weakly in H. In

particular, taking a vector en in the orthonormal basis we obtain

〈Kσm(z)−K(z), en〉H =
〈σm(z), en〉H

z − zn
P (z)−Gn(z) −→ 0 as m →∞ .
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Hence, there exists wn(z) = limm→∞〈σm(z), en〉H defining an entire function for each n ∈ N
via the analytic convergence theorem. Besides, Gn(z) = wn(z)

z−zn
P (z) and K(zn) = wn(zn)P ′(zn) 6=

0 which implies that wn(zn) 6= 0 for all n ∈ N. As a consequence, K is a generalized Lagrange-
Kramer sampling kernel. �

Having in mind the proof of the above theorem, its hypotheses can be relaxed in the
following way:

Corollary 3 Let K : C −→ H be an entire kernel satisfying K(zn) 6= 0 for all n ∈ N.
Assume that there exists a sequence of kernels {Kσm}∞m=1, where σm ∈ Σ, such that, for each
z ∈ C, Kσm(z) −→ K(z) weakly in H as m →∞. Then, K is a generalized Lagrange-Kramer
sampling kernel.

4 The case of constant σ: The spaces Ha

From now on we confine ourselves to the case where σ(z) := a ∈ H is constant. We denote
the corresponding RKHS of entire functions as Ha. We assume that the multiplicity of each
eigenvalue zn of A is kn = 1, denoting by {en}∞n=1 the corresponding orthonormal basis
of eigenfunctions. Our goal is to study the relationship between spaces Ha obtained from
different choices of a ∈ H. Recall that, for f := Ta(x), where x ∈ H, the sampling expansion
reads

f(z) =
∞∑

n=1

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C , (13)

and f(zn) = P ′(zn)〈x, en〉H〈a, en〉H for each n ∈ N.
Consider the spaces Ha and Hb associated with a, b ∈ H and set f ∈ Ha ∩ Hb. There

exist x, y ∈ H such that f = Tb(x) = Ta(y). For each k ∈ N we have

f(zk) = P ′(zk)〈ek, x〉H〈b, ek〉H = P ′(zk)〈ek, y〉H〈a, ek〉H .

Hence, 〈ek, x〉H〈b, ek〉H = 〈ek, y〉H〈a, ek〉H for each k ∈ N.

Lemma 5 Let a, b in H. Consider the sequence {ξk := 〈b, ek〉H/〈a, ek〉H}∞k=1, where we
assume that 〈b, em〉H = 0 whenever 〈a, em〉H = 0. In this case, ξm is taken to be 1. Then,

Hb ⊆ Ha ⇔ {ξk}∞k=1 ∈ `∞(N) .

Moreover, the inclusion Hb ↪→ Ha is continuous.

Proof: First of all, notice that whenever f(zk) = g(zk) for all k ∈ N, where f ∈ Ha and
g ∈ Hb, the sampling theorem (13) implies that f = g. Therefore, a function g = Tb(x) ∈ Hb,
where x ∈ H, belongs to Ha if and only if there exists y ∈ H such that

〈x, ek〉H〈b, ek〉H = 〈y, ek〉H〈a, ek〉H , for all k ∈ N . (14)

Because of (14), the inclusion Hb ⊆ Ha is equivalent to {〈x, ek〉H ξk}∞k=1 ∈ `2(N) for each
x ∈ H. The last assertion is equivalent to the fact that the sequence {ξk}∞k=1 belongs to
`∞(N).

To prove the continuity, consider f ∈ Hb. There exists x ∈ H such that Tb(x) = f and
‖f‖2

b = ‖x‖2 =
∑∞

k=1 |〈x, ek〉H|2. On the other hand, there exists y ∈ H such that f = Ta(y),
‖f‖2

a = ‖y‖2, and 〈y, ek〉H = 〈x, ek〉H ξk for all k ∈ N. Finally,

‖f‖2
b =

∞∑
k=1

|ξk|2 |〈x, ek〉H|2 ≤ ‖{ξk}‖2
∞ ‖f‖2

a ,
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from which we obtain the continuity for the inclusion Hb ⊆ Ha. �

Next, in the Hilbert space H we can define a binary relation “ ≈ ” as follows: For a, b ∈ H,

a ≈ b ⇔ ∃α, β > 0 such that 0 < α ≤ |〈b, ek〉H/〈a, ek〉H| ≤ β for all k ∈ N .

Lemma 6 The binary relation “ ≈ ” defines an equivalence relation in H.

Proof: The reflexivity is trivial. Now, assume a ≈ b with 0 < α ≤ |〈b, ek〉H/〈a, ek〉H| ≤ β.
Then, 0 < 1/β ≤ |〈a, ek〉H/〈b, ek〉H| ≤ 1/α. Finally, consider a ≈ b and b ≈ c, i.e.,

0 < α ≤ |〈b, ek〉H/〈a, ek〉H| ≤ β , 0 < α′ ≤ |〈c, ek〉H/〈b, ek〉H| ≤ β′ .

Hence, 0 < αα′ ≤ |〈c, ek〉H/〈a, ek〉H| ≤ ββ′ which implies a ≈ c. �

As a consequence of the above Lemma the following result holds:

Theorem 4 The spaces Ha and Hb coincide (as sets of functions) if and only if a ≈ b.
Moreover, the associated norms in Ha and Hb are equivalents.

Consider the set of entire functions Hres := ∪a∈HHa. As a consequence of Lemma 5, Hres

is a linear space of entire functions. Indeed, given two spaces Ha and Hb there exists another
Hc which contains them (take for instance c ∈ H having {|〈a, ek〉H|+ |〈b, ek〉H|}∞k=1 as Fourier
coefficients).

In the present context of constant σ, a Lagrange-Kramer sampling kernel KA will be
associated with a sequence A := {αn}∞n=1 in C \ {0} such that the series

∑∞
n=1

|P (z)|2|αn|2
|z−zn|2 is

uniformly bounded in compact subsets of C, and

KA(z) =
∞∑

n=1

P (z) αn

z − zn
en , z ∈ C .

Notice that it is easy to prove the existence of such a sequence. Indeed, given the closed disk
D(0;m), there exists a constant Cm such that

∣∣P (z)/(z − zn)
∣∣ ≤ Cm for all z ∈ D(0;m) and

for all n ∈ N. Choosing, for instance, αn = 1/(2nCn), the conditions for a Lagrange-Kramer
sampling kernel are satisfied.

The setHA := {f : C −→ C | f(z) := 〈KA(z), x〉H, x ∈ H} is a RKHS of entire functions.
In this case, HA ⊆ HB if and only if the sequence {αn/βn}∞n=1 belongs to `∞(N). Moreover,
the inclusion HA ↪→ HB is continuous. As a consequence, the space Hwt := ∪HA, where the
union is taken over all sequences A defining Lagrange-Kramer sampling kernels, is a linear
space of entire functions.

Lemma 7 Given a ∈ H, assume that there exists a sequence A := {αn}∞n=1 defining a
Lagrange-Kramer sampling kernel such that:

|〈a, ek〉H| ≤ |αk| , for each k ∈ N .

Then, Ha ⊆ HA with continuous inclusion.

Proof: It is enough to take into account that the sequence {〈a, ek〉H/αk}∞k=1 belongs to
`∞(N). �

Whenever the operator A is Hilbert-Schmidt, the sequence Ã := {αn = 1}∞n=1 defines a
Lagrange-Kramer sampling kernel. As a consequence of Lemma 7 we have that Ha ⊆ H eA for
all a ∈ H, and therefore Hres ⊆ H eA in this case.

11



4.1 The topology of the uniform convergence in Hres and Hwt

Consider the space H(C) of all entire functions endowed with the topology of uniform con-
vergence in compact sets. Recall that this topology is associated with the metric

d(f, g) =
∞∑

n=1

1
2n

‖f − g‖n

1 + ‖f − g‖n
, f, g ∈ H(C) ,

where ‖f − g‖m := supz∈D(0;m) |f(z)− g(z)|. Thus, H(C) becomes a Fréchet space [4].

We endow Hres, a linear subspace of H(C), with the induced topology of the uniform
convergence in compact sets of C. In Theorem 2 we have proved that Hwt ⊂ Hres, the closure
taken with respect to the above topology. In fact, any f ∈ Hwt, i.e., f(z) = 〈KA(z), x〉H,
where A := {αn}∞n=1 defines the Lagrange-Kramer sampling kernel KA, can be approximated,
uniformly in compact sets of C, by means of the sequence {fm}∞m=1 ⊂ Hres given by fm(z) =
〈Kam(z), x〉H where am is the vector in H whose Fourier coefficients in the orthonormal basis
{en}∞n=1 are given by

〈am, ei〉H =

{
1 if i ≤ m

0 if i > m.

For each m ∈ N, define Hm := Ham . Notice that Hm is the same set of functions for any
element in H having only the first m Fourier coefficients different from 0. Thus, we may also
consider the linear space Hfin := ∪m∈NHm. As linear subspaces of H(C), the closures of
Hres and Hfin coincide. Obviously we have the inclusion Hfin ⊆ Hres. Concerning the other
inclusion, Theorem 2 gives Hres ⊆ Hfin, and consequently Hfin = Hres.

In general, as we will see in Section 4.2, Hfin = Hres 6⊂ Hwt. Next, we prove a sufficient
condition ensuring that the uniform limit in compact subsets of a sequence {fm}∞m=1 in Hfin

belongs to Hwt. To this end, let {fm}∞m=1 be a sequence in Hfin such that fm ∈ Hm, for each
m ∈ N, and fm −→ f as m → ∞, uniformly in compact sets of C. Consider A := {αn}∞n=1

a sequence defining a Lagrange-Kramer sampling kernel KA. For each m ∈ N, let bm be the
element in H whose Fourier coefficientes with respect to the orthonormal basis {en}∞n=1 are
given by

〈bm, xi〉H =

{
αi if i ≤ m

0 if i > m,

and denote by Kbm the associated kernel. Since fm ∈ Hm = Hbm , there exists hm ∈ H such
that fm(z) = 〈Kbm(z), hm〉H, for z ∈ C. Under the above circumstances, the following result
holds:

Theorem 5 Assume that fm −→ f as m → ∞, uniformly in compact subsets of C, and
that the sequence {hm}∞m=1 is bounded in H. Then, there exists x ∈ H such that f(z) =
〈KA(z), x〉H for all z ∈ C.

Proof: For m ∈ N with m ≥ i we have

|fm(zi)− fn(zi)| = |αiP
′(zi)||〈ei, hm − hn〉H| ,

from which we conclude that

〈hn − hm,

M∑
k=1

λk ek〉H −→ 0 as n, m →∞ (15)
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in the dense subspace of all the finite linear combinations of vectors in the orthonormal basis
{en}∞n=1. As a consequence of the boundedness of the sequence {hn}∞n=1 we obtain that it is
a weakly Cauchy sequence in H. Indeed, let x ∈ H. Given ε > 0, there exists xε, a finite
linear combination of elements in the basis {en}∞n=1, such that ‖x− xε‖H ≤ ε. Hence,

|〈hn − hm, x〉H| ≤ |〈hn − hm, x− xε〉H|+ |〈hn − hm, xε〉H| ≤ 2Mε + |〈hn − hm, xε〉H| ,

where M denotes a bound for {hm}∞m=1. Taking (15) into account, we obtain that 〈hn −
hm, x〉H −→ 0 as n, m → ∞. Since every Hilbert space is weakly complete [1, p. 45], there
exists x ∈ H such that hn −→ x weakly in H as n →∞. Set h(z) = 〈KA(z), x〉H, z ∈ C. Our
goal is to prove that h(z) = f(z) for all z ∈ C. First, notice that f(zn) = h(zn) for all n ∈ N.
Indeed,

fm(zn) = 〈bm, en〉HP ′(zn)〈en, hm〉H −→ αnP ′(zn)〈en, x〉H = h(zn)

as m → ∞. The proof will be concluded if we prove that f satisfies the same sampling
formula than h does, namely, formula (13). To this end we use an argument similar to that
used in Theorem 2. Define

xm,n(z) =
n∑

k=1

fm(zk)
P (z)

P ′(zk)(z − zk)
.

For a fixed m ∈ N, we have that xm,n(z) −→ fm(z) as n →∞ and z ∈ C. Furthermore, this
convergence is uniform in m. Indeed,∣∣∣xm,n(z)− fm(z)

∣∣∣2 =
∣∣∣ ∞∑

k=n+1

P (z)〈bm, ek〉H
z − zk

〈ek, hm〉H
∣∣∣2

≤
∞∑

k=n+1

∣∣∣∣P (z)〈bm, ek〉H
z − zn

∣∣∣∣2 ∞∑
k=n+1

∣∣〈hm, ek〉H
∣∣2 ≤ ∞∑

k=n+1

∣∣∣∣P (z)αk

z − zk

∣∣∣∣2‖hm‖2

≤ C

∞∑
k=n+1

∣∣∣∣P (z)αk

z − zk

∣∣∣∣2 −→ 0

as n →∞, regardless m ∈ N.
On the other hand, as m →∞ we have

xm,n(z) −→
n∑

k=1

f(zk)
P (z)

(z − zk)P ′(zk)
=

n∑
k=1

h(zk)
P (z)

(z − zk)P ′(zk)

Finally, using the Moore-Smith theorem we obtain

lim
m→∞

fm(z) = lim
m→∞

∞∑
k=1

f(zk)
P (z)

(z − zk)P ′(zk)
=

∞∑
k=1

f(zk)
P (z)

(z − zk)P ′(zk)
= f(z) ,

that is, f(z) = h(z) = 〈KA(z), x〉H for all z ∈ C. �

4.2 The Paley-Wiener case

Consider the boundary value problem

−iy′(t) = zy(t) , t ∈ (−π, π) ,

y(−π) = y(π) .
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Consider the associated operator A : D(A) −→ L2(−π, π) defined by Af := −if ′, where

D(A) :=
{
f : [−π, π] → C | f ∈ AC[−π, π], f ′ ∈ L2(−π, π) and f(π) = f(−π)

}
.

A is self-adjoint, its spectrum is given by σ(A) = {zn = n : n ∈ Z} and the corresponding
sequence of orthogonal eigenfunctions is {en(t) = eint}n∈Z,

The resolvent operator of A, Rz = (zI −A)−1, is given by

[Rzg](t) =
eiz(t+π)

eizπ − e−izπ

∫ π

−π
e−izsg(s) ds− eizt

∫ t

−π
e−izsg(s) ds , t ∈ (−π, π) ,

where g ∈ H := L2(−π, π) and z ∈ C \ Z. Therefore, in this case, if we take P (z) =
eizπ − e−izπ = 2i sinπz, the associated resolvent sampling kernel is given by

[Kg(z)](t) = eiz(t+π)

∫ π

−π
e−izsg(s) ds− 2ieizt sinπz

∫ t

−π
e−izsg(s) ds , t ∈ (−π, π) ,

for g ∈ H. The associated sampling result reads as follows:

For a fixed f ∈ H, the function F (z) := 〈Kg(z), f〉H, z ∈ C can be expanded as the cardinal
sampling series:

F (z) =
∞∑

n=−∞
F (n) sinc(z − n) .

Notice that the classical Fourier kernel is a Lagrange-Kramer sampling kernel:

[K(z)](t) :=
eizt

√
2π

=
∞∑

n=−∞
sinc(z − n)

eint

√
2π

=
∞∑

n=−∞

(−1)n sinπz

π(z − n)
eint

√
2π

,

for the sequence A := {(−1)n/(2πi)}∞n=−∞ and P (z) = 2i sinπz. The corresponding space
HA coincides with the classical Paley-Wiener space PWπ.

We denote HPW := Hres. Notice that, as a consequence of Lemma 7, the inclusion
HPW ⊂ PWπ holds. Concerning the closure of HPW with respect to the topology of the
uniform convergence in compact sets we have the following result:

Theorem 6 The subspace HPW is dense in H(C).

Proof: First we prove that PWπ ⊆ HPW . Let G be in PWπ and consider g := F−1(G) in
L2(−π, π). For fixed z ∈ C, the function t 7→ [Kg(z)](t) is continuous in [−π, π]. Moreover,
[Kg(z)](tn) → [Kg(z)](t), as n →∞, uniformly on compact subsets of C whenever tn → t, as
n →∞.

Let {hn}∞n=1 be the sequence of functions defined by

hn(t) =


n if −π ≤ t ≤ −π + 1

n

0 if −π + 1
n < t ≤ π

For each n ∈ N, define fn(z) = 〈Kg(z), hn〉 ∈ Hg. The sequence of entire functions {fn}∞n=1 ⊂
Hg converges to the given function G ∈ PWπ uniformly in compact sets of C. Indeed,

fn(z) =
∫ −π+ 1

n

−π
[Kg(z)](s) ds = [Kg(z)](ξn) , with ξn ∈ [−π,−π +

1
n

] ,
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where we have used the mean value theorem for integrals. Hence,

fn(z) → [Kg(z)](−π) = G(z) ∈ PWπ as n →∞ ,

uniformly in compact subsets of C.
We finish the proof by showing that any polynomial can be approximated, uniformly in

compact subsets, by functions in PWπ. Consider a sequence {gn}∞n=1 in L2(−π, π) satisfying:

1. gn ∈ C∞, gn(x) ≥ 0 and supp gn ⊂ [− 1
n , 1

n ], for each n ∈ N.

2.
∫ 1

n

− 1
n

gn(s) ds = 1.

The sequence {gn}∞n=1 converges to Dirac’s delta in E ′, the space of compact supported dis-
tributions. By the Paley-Wiener-Schwartz-Ehrenpreis theorem, {ĝn}∞n=1 converges uniformly
in compact subsets of C to the constant function 1. Let p(z) be a polynomial in the com-
plex variable z. The sequence of entire functions {pn(z) := p(z)ĝn(z)}∞n=1 converges to p(z)
as n → ∞, uniformly in compact subsets of C. Moreover, for each n ∈ N, the function
pn belongs to PWπ. Indeed, pn is the Fourier transform of p(D)gn, where Dh = −ih′ and
ĥ(z) = 1√

2π

∫
R e−izsh(s) ds. Since the set of polynomials is dense in H(C), we conclude that

PWπ is dense in H(C) with respect to the compact uniform convergence. �
Consequently, in the Paley-Wiener case we have the inclusions (as subspaces of H(C) with

the topology of uniform convergence in compact sets):

HPW ⊂ PWπ ⊂ HPW = H(C) .
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