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Abstract

In this paper some results about regular multivariate generalized sampling in the Lp

setting (1 ≤ p ≤ ∞) are proven. Thus, stable multivariate regular sampling formulas
are derived for Lp shift-invariant spaces V pΦ , i.e., the Lp-closure of the linear span of the
shifts of a finite set Φ of generators. These sampling formulas include regular samples
of the function, its derivatives and/or some filtered versions of the function itself taken
at a lattice of Rd. Approximation schemes using these generalized sampling formulas
are also included.
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1 Statement of the problem

The classical Whittaker-Shannon-Kotel’nikov sampling formula has its counterpart in d
dimensions. Thus, any function f band-limited to the d-dimensional cube [−1/2, 1/2]d,
i.e., f(t) =

∫
[−1/2,1/2]d f̂(x)e2πix>tdx, t ∈ Rd, may be reconstructed from its sequence of

samples {f(α)}n∈Zd as

f(t) =
∑
α∈Zd

f(α) sinc(t1 − α1) . . . sinc(td − αd) , t = (t1, . . . , td) ∈ Rd .

Although Shannon’s sampling theory has had an enormous impact, it has a number of
problems, as pointed out by Unser in [34, 35]: It relies on the use of ideal filters; the
band-limited hypothesis is in contradiction with the idea of a finite duration signal; the
band-limiting operation generates Gibbs oscillations; and finally, the sinc function has
∗E-mail:agarcia@math.uc3m.es
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a very slow decay, which makes computation in the signal domain very inefficient. Be-
sides, in several dimensions it is also inefficient to assume that a multidimensional sig-
nal is band-limited to a d-dimensional interval. In addition, many applied problems
impose different a priori constraints on the type of functions. For these reasons, sam-
pling and reconstruction problems have been investigated in spline spaces, wavelet spaces,
and general shift-invariant spaces. Also to model the decay conditions of real signals,
the sampling theory is developed in weighted shift-invariant spaces. See, for instance,
[2, 3, 4, 5, 6, 12, 33, 35, 38, 39, 40] and the references therein.

In many practical applications, signals are assumed to belong to some shift-invariant
space of the form

V 2
Φ := spanL2(Rd)

{
φj(t− α) : α ∈ Zd, j = 1, 2, . . . , r

}
,

where Φ := {φj}rj=1 in L2(Rd) is the set of generators of V 2
Φ . Assuming that Φ is a stable

set of generators, i.e., the sequence {φj(t − α)}α∈Zd, j=1,2,...,r is a Riesz basis for V 2
Φ , the

shift-invariant space V 2
Φ can be described as

V 2
Φ =

{ r∑
j=1

∑
α∈Zd

aj,α φj(t− α) : {aj,α}α∈Zd ∈ `2(Zd) , j = 1, 2, . . . , r
}
⊂ L2(Rd) . (1)

On the other hand, in many common situations the available data are samples of some
filtered versions f ∗ hl of the signal f itself. This leads to generalized sampling (also
called average sampling in some recent papers [8, 32]) in V 2

Φ . Suppose that s convolution
systems (linear time-invariant systems or filters in engineering jargon) Υl, l = 1, 2, . . . , s,
are defined on the shift-invariant subspace V 2

Φ of L2(Rd). The goal is to recover any
function f in V 2

Φ from the set of samples {(Υlf)(Mα)}α∈Zd, l=1,2,...,s, taken at the lattice
MZd in Rd (M denotes a matrix of integer entries with positive determinant), by means
of a stable sampling formula like

f(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl(t−Mα) , t ∈ Rd . (2)

By stable sampling we mean that there exist two positive constants 0 < A ≤ B such that

A‖f‖2 ≤
s∑
l=1

‖{Υlf(Mα)}‖`2 ≤ B‖f‖2 , f ∈ V 2
Φ . (3)

The regular sampling L2-theory, which involves the well-known frame theory, has been
well-established by several authors (see, among others, [8, 21, 40]).

The aim of this paper is to prove some regular multivariate stable Lp-sampling results
(1 ≤ p ≤ ∞) and to construct approximation schemes, valid in appropriate Sobolev spaces,
by means of them. To this end we consider the Lp shift-invariant spaces

V p
Φ := spanLp(Rd)

{
φj(t− α) : α ∈ Zd, j = 1, 2, . . . , r

}
(1 ≤ p ≤ ∞) .

Under appropriate hypotheses (see infra Section 2), and assuming that the set of generators
Φ := {φj}rj=1 has Lp-stable shifts (see [30]) or, equivalently, it forms a p-Riesz basis for
V p

Φ (see [4, 24]), the space V p
Φ becomes a Banach space which can be described as

V p
Φ =

{ r∑
j=1

∑
α∈Zd

aj,α φj(t− α) : {aj,α}α∈Zd ∈ `p(Zd) , j = 1, 2, . . . , r
}
⊂ Lp(Rd) ,
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for 1 ≤ p <∞, and

V∞Φ =
{ r∑
j=1

∑
α∈Zd

aj,α φj(t− α) : {aj,α}α∈Zd ∈ c0(Zd) , j = 1, 2, . . . , r
}
⊂ L∞(Rd) ,

where c0(Zd) denotes the space of sequences on Zd vanishing at ∞.
In order to prove a sampling result for V p

Φ , 1 ≤ p ≤ ∞, like (2), we first prove it for
span{φj(t − α) : α ∈ Zd, j = 1, 2, . . . , r}, and then we extend it to the whole space V p

Φ ,
1 ≤ p ≤ ∞, by means of a density argument. In regarding formula (2), we note that the
inequality r(detM) ≤ s necessarily holds (see Lemma 1 infra). Also it is worth to mention
here that the reconstruction functions Sl in formula (2) are explicitly given. In this Lp

context, the stability condition (3) reads

Ap‖f‖p ≤
s∑
l=1

‖{Υlf(Mα)}‖`p ≤ Bp‖f‖p , f ∈ V p
Φ .

We also consider the space VΦ(∞) involving `∞(Zd) sequences

VΦ(∞) :=
{ r∑
j=1

∑
α∈Zd

aj,α φj(t− α) : {aj,α}α∈Zd ∈ `∞(Zd) , j = 1, 2, . . . , r
}
⊂ L∞(Rd) ,

endowed with the metric topology giving uniform convergence on compact subsets of Rd.
The corresponding sampling theorem (2) for VΦ(∞) is also obtained but the corresponding
stability condition does not remain true (see infra Section 4.6).

The last part of the paper concerns with the study of the approximation properties of
the scaled version of the sampling operator

Γf(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl(t−Mα) , t ∈ Rd .

In other words, we want to obtain a good approximation for a smooth function f (in a
Sobolev space) by means of the scaled operator Γh defined by Γh := σ1/hΓσh, where
σhf(·) := f(·h), h > 0. The goal is to obtain an estimation for the Lp-approximation
error of the type ‖Γhf − f‖p = O(hk) as h→ 0+, where k ∈ N denotes the approximation
order which coincides, in general, with the order of the Strang-Fix conditions satisfied by
the set of generators Φ.

The possibility of generalized sampling for obtaining approximation schemes in appro-
priate Sobolev spaces was derived in [20]; here we give some complementary results. For
approximation schemes constructed by using shift-invariant spaces see Refs. [10, 11, 26,
28, 29, 30] and the references therein. Compared to the approximation results in Refs.
[10, 15], the results here included have been proved by using a different technique which
allows samples of derivatives. All these steps will be carried out throughout the remaining
sections.

2 The shift-invariant spaces V p
Φ (1 ≤ p ≤ ∞)

We start this section by introducing some notations and preliminaries used in the sequel.
For 1 ≤ p ≤ ∞, Lp(Rd) denotes the classical Lebesgue space. We denote by `p(Zd)
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(1 ≤ p <∞) the space of pth power summable sequences on Zd, by `∞(Zd) the bounded
sequences, and by c0(Zd) the space of sequences on Zd vanishing at ∞.

Given a Lebesgue measurable function φ : Rd −→ C, set

|φ|p :=
(∫

[0,1)d

( ∑
α∈Zd

|φ(t− α)|
)p
dt

)1/p

when 1 ≤ p <∞ ,

|φ|∞ := ess sup
t∈[0,1)d

∑
α∈Zd

|φ(t− α)| when p =∞ .

For 1 ≤ p ≤ ∞, let Lp(Rd) :=
{
f : Rd −→ C measurable : |f |p <∞

}
. Equipped with the

norm | · |p, Lp(Rd) becomes a Banach space. These spaces are profusely used by Jia and
Micchelli in [27].

Clearly, |φ|1 = ‖φ‖1, ‖φ‖p ≤ |φ|p and |φ|p′ ≤ |φ|p for 1 ≤ p′ ≤ p ≤ ∞. This
shows that Lp(Rd) ⊂ Lp(Rd) and L∞(Rd) ⊂ Lp(Rd) ⊂ Lp′(Rd) ⊂ L1(Rd) = L1(Rd) for
1 ≤ p′ ≤ p ≤ ∞. Observe that if there are constants C > 0 and δ > 0 such that

|φ(t)| ≤ C

(1 + |t|)d+δ
, t ∈ Rd ,

then φ ∈ L∞(Rd). Thus, the Kth-order B-spline NK := χ[0,1] ∗ · · · ∗ χ[0,1] (K times)
belongs to L∞(Rd). The Wiener amalgam space W (L∞, `1) defined as

W (L∞, `1) :=
{
f : ‖f‖W :=

∑
α∈Zd

ess sup
t∈[0,1)d

|f(t+ α)| <∞
}
,

becomes a Banach space when considering the norm ‖ · ‖W . Analogously, we can con-
sider the amalgam space W (C0 , `

1), where C0 := C0(Rd) denote the space of continuous
functions on Rd vanishing at infinity. We have that

W (C0 , `
1) ⊂W (L∞, `1) ⊂ L∞(Rd) .

Given a function φ ∈ Lp(Rd) and a sequence a ∈ `∞(Zd), the semi-discrete convolution
product is defined by

φ ∗′ a :=
∑
α∈Zd

a(α)φ(· − α) .

In [7, 27] we can find the following useful inequalities:

• If φ ∈ Lp(Rd) (1 ≤ p ≤ ∞) then

|φ ∗′ a|p ≤ |φ|p ‖a‖1 and ‖φ ∗′ a‖p ≤ |φ|p ‖a‖p. (4)

• If f ∈ Lp(R) (respectively f ∈ Lp(Rd)) and h ∈ Lq(Rd) (1 ≤ p ≤ ∞, 1/p+ 1/q = 1)
then∥∥{h ∗ f(α)}α∈Zd

∥∥
1
≤ |h|q |f |p and

∥∥{h ∗ f(α)}α∈Zd
∥∥
p
≤ |h|q ‖f‖p , (5)

where, as usual, the convolution is given by h ∗ f :=
∫

Rd f(x)h(· − x)dx.

• If φ ∈W (L∞, `1) and a ∈ `1(Zd) then

‖φ ∗′ a‖W ≤ ‖φ‖W ‖a‖1 . (6)
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We denote the Fourier transform of f by f̂(ξ) :=
∫

Rd f(t)e−2πiξtdt.

First, we state the Lp-stable shifts concept (1 ≤ p ≤ ∞) as established in [30].

Definition 1 Let 1 ≤ p ≤ ∞. A finite subset Φ = {φj}rj=1 of L∞(Rd) is said to have
Lp-stable shifts if there exist positive constants 0 < A ≤ B (depending on p and Φ) such
that

A
r∑
j=1

‖aj‖`p ≤
∥∥ r∑
j=1

φj ∗′ aj
∥∥
Lp
≤ B

r∑
j=1

‖aj‖`p , (7)

for any sequence aj ∈ `p(Zd), j = 1, 2, . . . , r, when 1 ≤ p < ∞, and for any sequence
aj ∈ c0(Zd), j = 1, 2, . . . , r, when p =∞.

A necessary and sufficient condition for Φ = {φj}rj=1 of L∞(Rd) to have Lp-stable shifts,
regardless p, reads as follows: There are sequences bj ∈ `1(Zd), j = 1, 2, . . . , r, such that
the functions φ̃j := φj ∗′ bj are dual to the functions φj in the sense that

〈φj(· − ν), φ̃k(· − µ)〉 = δνµδjk , j, k = 1, 2, . . . , r , ν, µ ∈ Zd ,

where δ is the Kronecker symbol (see [27]). Thus we may drop the affiliation Lp from the
word stability. Notice that the sum in the middle term of (7) is independent of the order
in which the sum is performed.

Let V p
Φ be the Lp-closure of the linear span of the shifts of Φ = {φj}rj=1. If the integer

translates of Φ = {φj}rj=1 in L∞(Rd) are Lp-stable, then this space can be expressed as

V p
Φ =

{ r∑
j=1

φj ∗′ aj : aj ∈ `p(Zd) , j = 1, 2, . . . , r
}

if 1 ≤ p <∞ ,

or

V∞Φ =
{ r∑
j=1

φj ∗′ aj : aj ∈ c0(Zd) , j = 1, 2, . . . , r
}

if p =∞ .

(See the proof of Lemma 5.1 in [30]). As a consequence, for 1 ≤ p′ < p ≤ ∞ we have
the set inclusion V p′

Φ ⊂ V p
Φ . For more details and properties on shift-invariant spaces in

Lp(Rd) see [7].
Saying that the subset Φ = {φj}rj=1 of L∞(Rd) has Lp-stable shifts is equivalent to that

the sequence {φj(· − α) : α ∈ Zd , j = 1, 2, . . . , r} is a p-Riesz basis for V p
Φ , 1 ≤ p ≤ ∞.

Recall that (see [7, 24]):

Definition 2 Let B be a normed linear space. We say that {gα}α∈Zd is a p-Riesz basis
in B if there exists a positive constant C such that

C−1‖c‖`p ≤
∥∥∥∥ ∑
α∈Zd

c(α)gα

∥∥∥∥
B

≤ C‖c‖`p ,

for all c = {c(α)}α∈Zd ∈ `p(Zd) when 1 ≤ p < ∞, and for all c = {c(α)}α∈Zd ∈ c0(Zd)
when p =∞.

Thus, the shift-invariant space V p
Φ , 1 ≤ p < ∞, is a Banach space isomorphic to the

product space `p(Zd)× . . .× `p(Zd) (r times), whilst V∞Φ is a Banach space isomorphic to
c0(Zd)× . . .× c0(Zd) (r times). Obviously, a p-Riesz basis is unconditional.

Observe that a p-Riesz basis {φj(·−α) : α ∈ Zd , j = 1, 2, . . . , r} for the shift-invariant
space V p

Φ can be characterized in terms of the Gramian of Φ (see, for instance, [7]).
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3 Generalized sampling in V p
Φ : preliminaries

Assume that the generators Φ = {φj}rj=1 are continuous in Rd, they satisfy that

sup
t∈[0,1)d

∑
α∈Zd

|φj(t− α)| <∞ , j = 1, 2, . . . , r

(hence, φj ∈ L∞(Rd) for each for j = 1, 2, . . . , r), and they have Lp-stable shifts (i.e.,
regardless p as said before). As a consequence, V p

Φ ⊂ C(Rd).
We are mainly interested in obtaining generalized regular sampling formulas like (2)

valid for the shift-invariant spaces V p
Φ covering the full range 1 ≤ p ≤ ∞.

A sampling formula like (2) involves s convolution systems Υl, 1 ≤ l ≤ s, and samples
taken at the lattice MZd which we should precise:

3.1 The convolution systems Υl

First of all, we introduce some notation; for a point x = (x1, x2, . . . , xd) ∈ Rd and a d-
tuple of nonnegative integers α = (α1, α2, . . . , αd) ∈ Zd we denote α> x :=

∑d
k=1 αkxk. Let

N0 := N ∪ {0}. For a multi-index β = (β1, β2, . . . , βd) ∈ Nd
0, Dβ stands for the differential

operator Dβ := Dβ1
1 Dβ2

2 . . . Dβd
d , and |β| :=

∑d
j=1 |βj | for its order.

Throughout this paper we consider s convolution systems Υl, 1 ≤ l ≤ s, of the following
types:

(a) Whenever we are working in the space V p
Φ , the impulse response hl of the system Υl

belongs to Lq(Rd), where p and q are conjugate exponents, i.e.,(
Υlf

)
(t) := [f ∗ hl](t) =

∫
Rd
f(x)hl(t− x)dx , t ∈ Rd ,

for hl ∈ Lq(Rd) and q satisfying 1/p+ 1/q = 1.

(b) The impulse response is a shifted Dirac delta, i.e.,
(
Υlf

)
(t) := f(t+ cl), t ∈ Rd.

(c) The impulse response is a linear combination of partial derivatives of shifted deltas,
i.e., (

Υlf
)
(t) :=

∑
|β|≤Nl

cl,βD
βf(t+ dl,β) , t ∈ Rd .

If there is a system of this type, we also assume that Dβφj ∈ C(Rd) and satisfies
sup

t∈[0,1)d

∑
α∈Zd

|Dβφj(t− α)| <∞ for |β| ≤ Nl, j = 1, 2, . . . , r.

Any system of type (b) is a particular case of a system of type (c), but for the sake
of clarity we treat both cases separately. We denote by m the largest order among the
partial derivatives that appear in the systems of type (c) (m = 0 if there are only systems
of types (a) and/or (b)). From now on, we consider s systems Υl, l = 1, 2, . . . , s, of the
types (a), (b), (c) or a linear combination of them.

Let A be the Wiener algebra of the functions of the form f(x) =
∑

α∈Zd a(α)e2πiαx

with a := {a(α)}α∈Zd ∈ `1(Zd). The space A, normed by ‖f‖A := ‖a‖1 and with pointwise
multiplication becomes a commutative Banach algebra. If f ∈ A and f(x) 6= 0 for every
x ∈ Rd, the function 1/f is also in A by Wiener’s Lemma (see, for instance, [23]).
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The sequence {Υlφj(α)}α∈Zd belongs to `1(Zd) (for systems of type (b) or (c) it is
obvious having in mind the assumptions on φj and Dβφj ; use (5) for systems of type (a)).
The Fourier transform of this sequence, which belongs to the Banach algebra A, will play
an important role in the sequel. We denote it by

gl,j(x) :=
∑
α∈Zd

(
Υlφj

)
(α)e−2πiαx , x ∈ Rd ,

and
g>l (x) :=

(
gl,1(x), gl,2(x), . . . , gl,r(x)

)
, 1 ≤ l ≤ s . (8)

3.2 Lattices in Zd

Given a nonsingular matrix M with integer entries, we consider the lattice in Zd generated
by M , i.e.,

MZd := {Mα : α ∈ Zd} ⊂ Zd .

Without loss of generality we can assume that detM > 0; otherwise we can consider M ′ =
ME where E is some d× d integer matrix satisfying detE = −1; trivially, MZd = M ′Zd.
We denote by M> and M−> the transpose matrices of M and M−1 respectively. The
following useful generalized orthogonal relationship holds

∑
k∈N (M>)

e−2πiα>M−T k =

{
detM, α ∈MZd

0 α ∈ Zd \MZd
(9)

where
N (M>) := Zd ∩ {M>x : x ∈ [0, 1)d}

The set N (M>) has detM elements (see [37]). One of these elements is zero, say i1 = 0;
we denote the rest of elements by i2, . . . , idetM ordered in any form.

Notice that the sets, defined as Qk := M−>ik+M−>[0, 1)d, k = 1, 2, . . . ,detM , satisfy
(see [37, p. 110])

Qk ∩Qk′ = ∅ if k 6= k′ and Vol
( detM⋃

k=1

Qk

)
= 1 .

Thus, for any function F integrable in [0, 1)d and Zd-periodic we have
∫

[0,1)d F (x)dx =∑detM
k=1

∫
Qk
F (x)dx.

In order to recover any function f ∈ V p
Φ from its generalized samples at a lattice MZd,

i.e., from the sequence of samples
{

(Υlf)(Mα)
}
α∈Zd, l=1,2,...,s

, a suitable expression for
the samples will be useful

3.3 An expression for the samples

First, consider the map

TΦ : A× . . .×A −→ Lp(Rd)
F> := (f1, . . . , fr) 7−→

∑r
j=1 φj ∗′ aj ,

(10)

where fj(x) =
∑

α∈Zd aj(α)e−2πiαx ∈ A, j = 1, 2, . . . , r. Notice that (4) ensures that TΦ is
a well-defined bounded operator by considering inA×. . .×A the norm ‖F‖ :=

∑r
j=1 ‖aj‖1.
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For f ∈ span{φj(· − α) : α ∈ Zd , j = 1, 2, . . . , r} let a = {(a1(α), . . . , ar(α))} be the
finite sequence such that f =

∑r
j=1 φj∗′aj and the corresponding trigonometric polynomial

F>(x) :=
(∑

α a1(α)e−2πiαx, . . . ,
∑

α ar(α)e−2πiαx
)

=
∑

α a(α)e−2πiαx, so that TΦF = f .

For any l = 1, 2, . . . , s and α ∈ Zd, we have

(Υlf)(Mα) =
∑
µ

r∑
j=1

aj(µ)(Υlφj)(Mα− µ) = 〈F,gle−2πiα>M>x〉L2[0,1)d

=
∫

[0,1)d
F>(x)gl(x)e2πiα>M>xdx .

(11)

As the sequence {e−2πiα>M>x}α∈Zd is an orthogonal basis for L2(M−>[0, 1)d), we can
exploit this fact in computing the above integral as follows

(Υlf)(Mα) =
detM∑
k=1

∫
Qk

F>(x)gl(x)e2πiα>M>xdx

=
∫
M−>[0,1)d

detM∑
k=1

F>(x+M−>ik)gl(x+M−>ik) e2πiα>M>xdx .

(12)

This leads us to introduce the s × (detM)r matrix of functions G(x), x ∈ [0, 1)d, which,
involving the functions in (8), is given by

G(x) :=


g>1 (x) g>1 (x+M−>i2) · · · g>1 (x+M−>idetM )
g>2 (x) g>2 (x+M−>i2) · · · g>2 (x+M−>idetM )

...
...

...
...

g>s (x) g>s (x+M−>i2) · · · g>s (x+M−>idetM )



=
[
g>l
(
x+M−>ik

)]
l=1,2,...,s

k=1,2,...,detM

.

(13)

As we will see in next section, the reconstruction functions Sl, l = 1, 2, . . . , s, appearing
in formula (2) rely on the existence of left inverse matrices of G(x) having entries in the
algebra A.

Lemma 1 There exists an r × s matrix d(x) :=
(
d1(x),d2(x), . . . ,ds(x)

)
with entries

dj,l ∈ A, j = 1, 2, . . . , r, l = 1, 2, . . . , s and satisfying

d(x)G(x) =


1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . 1 0 . . . 0

 = [Ir,Or×(detM−1)r] , x ∈ [0, 1)d , (14)

if and only if rank G(x) = (detM)r for all x ∈ Rd.

Proof. Notice that rank G(x) = (detM)r if and only if det(G∗(x)G(x)) 6= 0 where
G∗(x) denotes the conjugate transpose of G(x). If rank G(x) = (detM)r then the first r
rows of the pseudo inverse of G(x), G†(x) :=

(
G∗(x)G(x)

)−1G∗(x), satisfy (14); moreover,
according to Wiener’s Lemma the entries of G† belong to A.
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Conversely, assume that the r × s matrix d(x) =
(
d1(x),d2(x), . . . ,ds(x)

)
satisfies

(14). We consider the periodic extension of dj,l, i.e., dj,l(x+ α) = dj,l(x), α ∈ Zd. For all
x ∈ [0, 1)d, the matrix

D>(x) :=


d1(x) d2(x) · · · ds(x)

d1(x+M−>i2) d2(x+M−>i2) · · · ds(x+M−>i2)
...

...
...

d1(x+M−>idetM ) d2(x+M−>idetM ) · · · ds(x+M−>idetM )

 (15)

is a left inverse matrix of G(x). Therefore, necessarily rank G(x) = (detM)r, for all
x ∈ [0, 1)d. �

Provided that the condition (14) in Lemma 1 is satisfied, it can be easily checked that
all matrices d(x) with entries in A, and satisfying (14) correspond to the first r rows of
the matrices of the form

D>(x) = G†(x) + U(x)
[
Is −G(x)G†(x)

]
, (16)

where U(x) is any (detM)r × s matrix with entries in A. Notice that if s = (detM)r
there exists a unique matrix d(x), given by the first r rows of G−1(x); if s > (detM)r
there are many solutions according to (16).

Notice that the result in Lemma 1 has also its counterpart for Beurling weighted
variants Av := F−1`1v(Zd) of the Wiener’s algebra A (see [23]).

4 Multivariate generalized sampling in V p
Φ (1 ≤ p ≤ ∞)

As we have pointed out in the introductory section, our sampling result for V p
Φ , 1 ≤

p ≤ ∞, rely on its version for the linear span of {φj(· − α) : α ∈ Zd , j = 1, 2, . . . , r}.
In so doing, assume that the set of continuous generators Φ = {φj}rj=1 satisfy, for j =

1, 2, · · · , r that sup
t∈[0,1)d

∑
α∈Zd

|φj(t− α)| <∞. Consider also s convolution systems Υl, l =

1, 2, · · · , s, satisfying that |hl|1 < ∞ whenever Υl is a system of type (a), and satisfying
that sup

t∈[0,1)d

∑
α∈Zd

|Dβφj(t− α)| <∞ whenever the derivative Dβφj appears in a system of

type (c). The following lemma holds for the span of the integer shifts of Φ = {φj}rj=1:

Lemma 2 Let d(x) =
(
d1(x), d2(x), . . . , ds(x)

)
be an r × s matrix with entries dj,l ∈ A,

j = 1, 2, . . . , r, l = 1, 2, . . . , s, and satisfying (14). Then, for any f ∈ span{φj(· − α) :
α ∈ Zd , j = 1, 2, . . . , r} the following sampling expansion holds:

f(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(t−Mα) , t ∈ Rd , (17)

where the reconstruction function Sl,d is given by

Sl,d(t) = (detM)
∑
α∈Zd

r∑
j=1

d̂j,l(α)φj(t− α) , t ∈ Rd , (18)

with d̂j,l(α) :=
∫

[0,1)d dj,l(x)e2πiαxdx, α ∈ Zd, the Fourier coefficients of the functions
dl,j ∈ A, j = 1, 2, . . . , r and l = 1, 2, . . . , s. The convergence of the sampling series is in
the Lp-norm sense and uniform on Rd.
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Proof. For f ∈ span{φj(· − α) : α ∈ Zd , j = 1, 2, . . . , r} let a = {(a1(α), . . . , ar(α))} be
the finite sequence such that f =

∑r
j=1 φj ∗′ aj and

F>(x) :=
(∑

α

a1(α)e−2πiαx, . . . ,
∑
α

ar(α)e−2πiαx
)

=
∑
α

a(α)e−2πiαx

the corresponding trigonometric polynomial such that TΦF = f (see (10)).
Having in mind expression (12), the sequence of samples {(Υlf)(Mα)}α∈Zd forms the

Fourier coefficients of the continuous function
∑detM

k=1 F>(x+M−>ik)gl(x+M−>ik) with
respect to the orthogonal basis {e−2πiα>M>x}α∈Zd for L2(M−>[0, 1)d).

Since {Υlφj(α)}α∈Zd ∈ `1(Zd) we have that {Υlf(Mα)}α∈Zd ∈ `1(Zd) (remind that
(Υlf)(Mα) is a finite sum

∑∑r
j=1 aj(µ)(Υlφj)(Mα − µ)). Therefore, for l = 1, 2 . . . , s,

we have

detM∑
k=1

F>(x+M−>ik)gl(x+M−>ik) = (detM)
∑
α∈Zd

(Υlf)(Mα)e−2πiα>M>x ,

x ∈M−>[0, 1)d. By periodicity, the above equality also holds for all x ∈ [0, 1)d. Hence we
can write

G(x)F(x) = (detM)
( ∑
α∈Zd

(Υ1f)(Mα)e−2πiα>M>x, . . . ,
∑
α∈Zd

(Υsf)(Mα)e−2πiα>M>x
)>

where G(x) is the s× (detM)r matrix, defined in (13) and

F(x) :=
(
F>(x),F>(x+M−>i2), · · · ,F>(x+M−>idetM )

)>
.

Multiplying on the left by the matrix d(x) we obtain F(x) by means of the generalized
samples

F(x) = (detM)
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)dl(x)e−2πiα>M>x, x ∈ [0, 1)d . (19)

Since {(Υlf)(Mα)}α∈Zd belongs to `1(Zd) and dl,j ∈ A, the series in (19) also converges
in the norm of A× . . .×A. Indeed, for N ∈ N,∥∥∥ ∑

|α|>N

(Υlf)(Mα)dl(x)e−2πiα>M>x
∥∥∥ ≤ ‖dl‖∥∥∥ ∑

|α|>N

(Υlf)(Mα)e−2πiα>M>x
∥∥∥
A

= ‖dl‖
∑
|α|>N

|(Υlf)(Mα)| .

Applying TΦ to both sides of the equality (19), and using that[
TΦdl(·)e−2πiα>M>·](t) =

[
TΦdl

]
(t−Mα) , α ∈ Zd ,

we deduce that

f =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(· −Mα) in Lp(Rd) ,

10



where Sl,d = (detM)TΦdl, for l = 1, 2, . . . , s.
The reconstruction functions Sl,d, l = 1, 2, . . . , s, are determined from the Fourier

coefficients of dj,l, d̂j,l(α) :=
∫

[0,1)d dj,l(x)e2πiαxdx. More specifically,

Sl,d(t) = (detM)
∑
α∈Zd

r∑
j=1

d̂j,l(α)φj(t− α) , t ∈ Rd .

The sequence d̂j,l ∈ `1(Zd) because the function dj,l(x) =
∑

α∈Zd d̂j,l(α)e−2πiαx belongs to
A. As a consequence, Sl,d ∈ V 1

Φ ⊂ V∞Φ . Hence, the partial sums of the above sampling
series are in V∞Φ , i.e., are continuous functions and, as a consequence, they converge
uniformly on Rd. �

Some comments about Lemma 2 are in order:

1. We are assuming that rank G(x) = (detM)r for all x ∈ Rd and, consequently
s ≥ r(detM).

2. Since dj,l ∈ A and φj ∈ L∞(Rd), by using (4) the reconstruction functions (18)
satisfy that Sl,d ∈ L∞(Rd), l = 1, 2, . . . , s. Similarly, whenever φj ∈ W (L∞, `1),
inequality (6) shows that the reconstruction function Sl,d belongs to W (L∞, `1) for
l = 1, 2, . . . , s.

3. The Fourier transform of Sl,d can be determined from the functions dj,l. Indeed,
from (18), we obtain that

Ŝl,d(w) = (detM)
r∑
j=1

dj,l(w)φ̂j(w) , w ∈ Rd .

4. In the case s = (detM)r, there is a unique r × s matrix d(x) satisfying (14), which
is those formed with the first r rows of the matrix G−1(x) = D>(x) in the notation
of (15). Then, using (12), we obtain that the reconstruction functions Sl,d satisfy in
this case an interpolatory property; namely

(Υl′Sl,d)(Mα) = (detM)
∫
M−>[0,1)d

detM∑
k=1

dl(x+M−>ik)gl′(x+M−>ik) e2πiα>M>xdx

= δl′,l (detM)
∫
M−>[0,1)d

e2πiα>M>xdx =

{
1 if l = l′ and α = 0
0 otherwise.

4.1 The sampling result in V p
Φ (1 ≤ p <∞)

Assume that the set of generators Φ = {φj}rj=1 has also Lp-stable shifts, and that the
hypotheses in Lemma 2 hold with |hl|q < ∞ when appearing systems Υl of type (a)
(which implies that |hl|1 <∞). Then, a density argument allows us to prove that sampling
formula (17) in Lemma 2 is also valid for the whole space V p

Φ :

Theorem 1 Under the above assumptions, for any f ∈ V p
Φ (1 ≤ p < ∞), the sampling

formula

f =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(· −Mα) , (20)

holds in the Lp-sense. The series in (20) also converges absolutely and uniformly on Rd.
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Proof. We define on V p
Φ the sampling operator

Γd : V p
Φ −→ V p

Φ

f 7−→ Γdf :=
∑s

l=1

∑
α∈Zd(Υlf)(Mα)Sl,d(· −Mα) .

It is a well-defined and bounded operator regardless the type of convolution systems Υl:
Having in mind (4), notice that ‖{(Υlf)(Mα)}α∈Zd‖p ≤ Cl‖f‖p; for systems of type (a) we
use (5), whilst for systems of type (b) or (c) we are using the inequality ‖a∗b‖p ≤ ‖a‖p‖b‖1
for sequences, the hypotheses on φj and Dβφj , and the left inequality in (7) (since Φ has
Lp-stable shifts).

Given f ∈ V p
Φ , there exists a sequence {fN} in span{φj(·−α) : α ∈ Zd , j = 1, 2, . . . , r}

such that ‖fN − f‖p → 0 as N →∞. By using Lemma 2 we have,

0 ≤ ‖f − Γdf‖p = ‖f − fN + ΓdfN − Γdf‖p ≤ (1 + ‖Γd‖)‖fN − f‖p → 0 , N →∞ ,

which implies that Γdf = f in Lp(Rd), i.e., the validity of the sampling result (17).
The series

∑s
l=1

∑
α∈Zd(Υlf)(Mα)Sl,d(t −Mα) converges, absolutely and uniformly

on Rd, to the continuous function f . Indeed,∑
|α|>N

∣∣(Υlf)(Mα)Sl,d(t−Mα)
∣∣ ≤ sup

|α|>N

∣∣(Υlf)(Mα)
∣∣ sup
t∈[0,1)d

∑
α∈Zd

∣∣Sl,d(t−Mα)
∣∣→ 0 ,

uniformly on Rd as N →∞.
�

For average sampling, i.e., where we are only dealing with systems of the type (a),
Theorem 1 still remains valid by relaxing the hypotheses to the generators φj belong to
Lp(Rd) and supt∈[0,1)d

∥∥{φj(t− α)}α∈Zd
∥∥
q
<∞, j = 1, 2, . . . , r (1/p+ 1/q = 1).

4.2 Some comments on the case p = 2

In the case p = 2 we can exploit the hilbertian structure of V 2
Φ whenever the generators

φj ∈ L2(Rd), and supt∈[0,1)d
∥∥{φj(t − α)}α∈Zd

∥∥
2
< ∞, j = 1, 2, . . . , r. Based on previous

work of the authors [18, 19, 21], we can state that the entries of the function gl in (8)
belong to L2(Rd) whenever hl ∈ L1(Rd) ∩ L2(Rd), l = 1, 2, . . . , s (see [18, Lemma 1]).
Associated with the matrix G defined in (13), consider its related constants

AG := ess inf
x∈[0,1)d

λmin[G∗(x)G(x)], BG := ess sup
x∈[0,1)d

λmax[G∗(x)G(x)] ,

where G∗(x) denotes the transpose conjugate of the matrix G(x), and λmin (respectively
λmax) the smallest (respectively the largest) eigenvalue of the positive semidefinite matrix
G∗(x)G(x). Observe that 0 ≤ AG ≤ BG ≤ ∞. Notice that in the definition of the
matrix G(x) we are considering the Zd-periodic extension of the involved functions gl,
l = 1, 2, . . . , s. Under these circumstances, the following result holds (see [18, Theorems
1,2], [19, Theorem 1] and [21, Theorem 1]):

Theorem 2 Assume that the entries of the functions gl in (8) belong to L∞[0, 1)d for
l = 1, 2, . . . , s. The following statements are equivalent:

(a) AG > 0

12



(b) There exists an r×s matrix d(x) :=
(
d1(x),d2(x), . . . ,ds(x)

)
with entries in L∞[0, 1)d

such that
d(x)G(x) = [Ir,Or×(detM−1)r] , a.e. in [0, 1)d . (21)

(c) There exists a frame for V 2
Φ having the form {Sl,d(· −Mα)}α∈Zd, l=1,2,...,s such that

for any f ∈ V 2
Φ ,

f =
∑
α∈Zd

s∑
l=1

(Υlf
)
(Mα) Sl,d(· −Mα) in L2(Rd) . (22)

In case the equivalent conditions are satisfied, the reconstruction functions Sl,d, l =
1, 2, . . . , s, are given by (18). The series in (22) also converges absolutely and uniformly
on Rd.

The assumption that the entries of the functions gl in (8) belong to L∞[0, 1)d for l =
1, 2, . . . , s (which is equivalent to BG < ∞) means that

{
gl(x)e−2πiα>M>x

}
α∈Zd, l=1,2,...,s

is a Bessel sequence for the product Hilbert space L2[0, 1)d× · · · ×L2[0, 1)d (r times) (see
[19, Lemma 2]).

All the admissible solutions of (21) are given by the first r rows of the matrix (16)
where U(x) denotes now any (detM)r × s matrix with entries in L∞[0, 1)d.

Notice that if s = (detM)r there exists a unique matrix d(x), given by the first r rows
of G−1(x); if s > (detM)r there are many solutions according to (16). Something more
can be said in the case where s = (detM)r (see [19, Theorem 2]):

Theorem 3 Assume that the entries of the functions gl belong to L∞[0, 1)d for l =
1, 2, . . . , s and s = (detM)r. The following statements are equivalent:

(i) AG > 0

(ii) There exists a Riesz basis {Sl,α}α∈Zd, l=1,2,...,s for V 2
Φ such that for any f ∈ V 2

Φ , the
expansion

f =
∑
α∈Zd

s∑
l=1

(Υlf
)
(Mα) Sl,α in L2(R2) , (23)

holds.

In case the equivalent conditions are satisfied, necessarily Sl,α(t) = Sl,d(t−Mα) , t ∈ Rd

where Sl,d, l = 1, 2, . . . , s, is given by (18) being d(x) the r × s matrix formed with the
r first rows of G−1. Moreover, the sampling functions Sl,d, l = 1, 2, . . . , s, satisfy the
interpolation property (Υl′Sl,d)(Mα) = δl,l′δα,0, where l, l′ = 1, 2, . . . , s and α ∈ Zd.

4.3 The sampling result in V ∞Φ

Assume that the set of continuous generators Φ = {φj}rj=1 has Lp-stable shifts, and
that the hypotheses in Lemma 2 hold with |hl|1 < ∞. Associated with an r × s matrix
d(x) =

(
d1(x),d2(x), . . . ,ds(x)

)
with entries dj,l ∈ A, j = 1, 2, . . . , r, l = 1, 2, . . . , s, and

satisfying (14), we consider the sampling operator Γd, formally defined as

(
Γdf

)
(t) :=

s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(t−Mα) , t ∈ Rd . (24)
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Recall that m stands for the largest order among the partial derivatives appearing in
systems of type (c) (m = 0 if there are only systems of types (a) and (b)). The space
Cmb (Rd) consists of all functions f which, together with all their partial derivatives Dβf of
order |β| ≤ m, are continuous and bounded on Rd. The space Cmb (Rd) becomes a Banach
space with the norm ‖f‖Cmb := max|β|≤m supt∈Rd |Dβf(t)|.

Lemma 3 For any r × s matrix d with entries in A and satisfying (14), there exists a
constant K > 0 such that, for each f ∈ Cmb (Rd),∣∣(Γdf

)
(t)
∣∣ ≤ K‖f‖Cmb for all t ∈ Rd.

Proof. If the system Υl is of the type (a), then for all f ∈ Cmb (Rd),∣∣Υlf(α)
∣∣ ≤ ‖hl‖1 ‖f‖∞ ≤ ‖hl‖1 ‖f‖Cmb , α ∈ Zd .

If the system Υl is of the type (c) (including in particular the type (b)) then for all
f ∈ Cmb (Rd),

|Υlf(α)| ≤
∑
|β|≤Nl

|cl,β| |Dβf(α+ dl,β)| ≤M max
|β|≤Nl

|cl,β| ‖f‖Cmb , α ∈ Zd ,

for some constant M . Since Sl,d ∈ L∞(Rd) then, for any f ∈ Cmb (Rd),

|Γdf(t)| ≤
s∑
l=1

∣∣∣ ∑
α∈Zd

(Υlf)(α)Sl,d(t− α)
∣∣∣ ≤ s∑

l=1

∥∥{Υlf(α)}n∈Zd
∥∥
∞|Sl,d|∞

≤ K‖f‖Cmb , t ∈ Rd,

where K is a constant independent of f . �

Theorem 4 Let d(x) =
(
d1(x),d2(x), . . . ,ds(x)

)
be an r×s matrix with entries dj,l ∈ A,

j = 1, 2, . . . , r, l = 1, 2, . . . , s, and satisfying (14). Then, for any f ∈ V∞Φ , the following
sampling formula holds:

f(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(t−Mα) , t ∈ Rd , (25)

where the reconstruction functions Sl,d, l = 1, 2, . . . , s, are given by (18). Assuming that
the continuous functions φj , Dβφj, |β| ≤ m, j = 1, 2, . . . , r, vanish at infinity, then the
convergence of the sampling series is also absolute and uniform on Rd.

Proof. Let f ∈ V∞Φ ; then f(t) =
∑

α∈Zd
∑r

j=1 aj(α)φj(t − α), when aj ∈ c0(Zd),
j = 1, 2, . . . , r. For M ∈ N we define

fM (t) :=
∑
|α|≤M

r∑
j=1

aj(α)φj(t− α) .

From the assumptions on the generators φj we have that fM ∈ Cmb (Rd). Moreover, let
|β| ≤ m and M > N > 0, for any t ∈ Rd we have

|Dβ(fM − fN )(t)| ≤
∑

N<|α|≤M

r∑
j=1

|aj(α)| |Dβφj(t− α)| ≤ sup
N<|α|≤M

r∑
j=1

|aj(α)| |Dβφj |∞ .
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Since the sequences aj ∈ c0(Zd), the sequence {fM}∞M=1 is a Cauchy sequence in the
Banach space Cmb (Rd), we deduce that fM converges in the Cmb -norm to f as M →∞. In
particular f ∈ Cmb (Rd). Using Lemmas 2 and 3 we obtain that, for all t ∈ Rd,

0 ≤ |fM (t)− Γdf(t)| =
∣∣[Γd(fM − f)](t)

∣∣ ≤ K‖fM − f‖Cmb → 0 as M →∞,

and then Γdf(t) = f(t) for all t ∈ Rd. This proves that the sampling formula (25) holds
pointwise. It remains to prove the absolute and uniform convergence of the series in
(25). For |β| ≤ m, assuming that Dβφj ∈ C0(Rd) we have that DβfM ∈ C0(Rd). Since
DβfM converges uniformly to Dβf on Rd, and C0(Rd) is a closed subspace in L∞(Rd), we
obtain that Dβf ∈ C0(Rd). From this fact and using the Lebesgue dominated convergence
theorem (whenever Υl is a system of type (a)), we obtain that {(Υlf)(Mα)}α∈Zd ∈ c0(Rd)
for each l = 1, 2, . . . , s. Hence, by using that Sl,d ∈ L∞(Rd) and the inequality∑

|α|>N

|(Υlf)(Mα)Sl,d(t−Mα)| ≤ sup
|α|>N

|(Υlf)(Mα)| |Sl,d|∞ , t ∈ Rd, N ∈ N ,

we obtain that the series in (25) converges absolutely and uniformly on Rd. �

Under the assumed hypotheses, observe that in the proof of the theorem we have
obtained that V∞Φ ⊂ Cmb (Rd).

In case the continuous functions φj and Dβφj , |β| ≤ m, j = 1, 2, . . . , r, belong to the
Wiener space W (L∞, `1), then they also belong to L∞(Rd) ∩ C0(Rd).

4.4 Some illustrative examples

We include here some examples illustrating Theorems 1 and 4 by taking B-splines as
generators. They belong to L∞ since they are compactly supported, and they have Lp-
stable shifts for 1 ≤ p ≤ ∞, fulfilling the required assumptions. Moreover, they certainly
are important for practical purposes [34].

4.4.1 The case r = 1, M = I and s = 1

Here a sampling formula (20) exists whenever g(x) =
∑

α∈Zd Υφ(α)e−2πiαx 6= 0, ∀x ∈ Rd.
It is unique and it can be written as: For any f ∈ V p

φ ,

f(t) =
∑
α∈Zd

Υf(α)S(t− α) , t ∈ Rd , (26)

where S(t) =
∑

α∈Zd d̂(α)φ(t− α) and d̂(α) are the Fourier coefficients of d(x) = 1/g(x).
Taking the centered quadratic B-spline β3 := χ[−1/2,1/2) ∗ χ[−1/2,1/2) ∗ χ[−1/2,1/2) as gener-
ator, we obtain the space V p

β3
, 1 ≤ p ≤ ∞, of quadratic B-spline f ∈ C2(R) ∩ Lp(R) with

knots on Z + 1/2. In V p
β3

formula (26) for Υf = f reads:

f(t) =
∑
n∈Z

f(n)S(t− n) , t ∈ R , (27)

where the reconstruction function is S(t) =
√

2
∑

n∈Z(2
√

2− 3)|n|β3(t− n). This formula,
as well as that corresponding to the cubic B-spline, is very useful in practice (see [34, 35]).

Formulas (26) corresponding to Υf = f ∗ h recover any function f ∈ V p
φ from the local

average f ∗ h(α) =
∫

Rd f(t)h(α − t) dt, α ∈ Zd, where the averaging function h is related
to the acquisition device (see [8, 32]).
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4.4.2 The case d = 1, r = 1, M = 2 and s = 2

Here a sampling formula (20) exists in V p
φ whenever the matrix

G(x) =
[
g1(x) g1(x+ 1/2)
g2(x) g2(x+ 1/2)

]
, where gl(x) =

∑
n∈Z

Υlφ(n)e−2πinx, l = 1, 2 ,

is no singular for all x ∈ [0, 1). The reconstruction functions are unique and the sampling
formula reads:

f(t) =
∑
n∈Z

[
Υ1f(2n)S1(t− 2n) + Υ2f(2n)S2(t− 2n)

]
, t ∈ R , (28)

where the reconstruction functions are given by Sl(t) = 2
∑

n∈Z d̂l(n)φ(t − n), l = 1, 2 ,
being {d̂l(n)} the Fourier coefficients of the functions

d1(x) =
g2(x+ 1/2)

det G(x)
, d2(x) =

−g1(x+ 1/2)
det G(x)

.

For instance, taking Υ1f = f and Υ2f = f ′ we obtain a sampling formula that allows
to recover any function of V p

φ from samples of the function and of its first derivative (see
[36])

f(t) =
∑
n∈Z

[
f(2n)S1(t− 2n) + f ′(2n)S2(t− 2n)

]
, t ∈ R . (29)

Next we give three examples where s > r(detM), i.e., in the oversampling setting.

4.4.3 The case d = 1, r = 1, M = 1 and s = 2

In the oversampling setting we are using a higher sampling rate but in contrast they are
infinitely many reconstruction functions (provided G(x) has full rank for all x ∈ R). So,
we can choose among different reconstruction functions Sl. This flexibility can be used in
order to obtain appropriate sampling formula (see [21, 22]). For example, to recover any
function f ∈ V p

β3
from its samples we can use formula (27) which uses sampling rate 1.

We can also take s = 2 and M = 1 with Υ1f(t) = f(t) and Υ2f(t) = f(t+ 1/2), obtaining
sampling formulas as

f(t) =
∑
n∈Z

[
f(n)S1(t− n) + f(n+ 1/2)S2(t− n)

]
, t ∈ R ,

where the reconstruction functions are

S1(t) =
∑
n∈Z

d̂1(n)β3(t− n), S2(t) =
∑
n∈Z

d̂2(n)β3(t− n)

where the functions d1, d2 can be chosen among those satisfying

d1(x)(e2πix + 6 + e−2πix)/8 + d2(x)(e2πix + 1)/2 = 1 .

By choosing d1(x) = 2 and d2(x) = −(1 + e−2πix)/2, we obtain S1(t) = 2β3(t) and
S2(t) = −(1/2)[β3(t) +β3(t− 1)]. These reconstruction function have a small support and
are computationally efficient.
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4.4.4 The case d = 1, r = 1, M = 2 and s = 3

Let N3(t) := χ[0,1] ∗ χ[0,1] ∗ χ[0,1](t) be the quadratic B-spline and let Υj be the systems:

Υ1f(t) = f(t); Υ2f(t) = f(t+
2
3

) and Υ3f(t) = f(t+
4
3

) .

Since the functions Υjφ, j = 1, 2, 3 , have compact support, then the entries of the
3 × 2 matrix G(x) are trigonometric polynomials and we can try to search a vector
(d1(x), d2(x), d3(x)) satisfying (14) with trigonometric polynomials entries also. This im-
plies reconstruction functions Sl, l = 1, 2, 3 , with compact support. Proceeding as in [22]
we obtain that any function f ∈ V p

N3
can be recovered through the sampling formula:

f(t) =
∑
n∈Z

[
f(2n)S1(t− 2n) + f(2n+ 2/3)S2(t− 2n) + f(2n+ 4/3)S3(t− 2n)

]
, t ∈ R ,

where the reconstruction functions are given by

S1(t) =
1
16
(
N3(t+ 3)− 3N3(t+ 2)− 3N3(t+ 1) +N3(t)

)
,

S2(t) =
1
16
(
27N3(t+ 1)− 9N3(t)

)
,

S3(t) =
1
16
(
− 9N3(t+ 1) + 27N3(t)

)
, t ∈ R .

4.4.5 The case d = 1, r = 2, M = 1 and s = 3

Consider the Hermite cubic splines defined as

ϕ1(t) =


(t+ 1)2(1− 2t), t ∈ [−1, 0]
(1− t)2(1 + 2t), t ∈ [0, 1]
0, |t| > 1

and ϕ2(t) =


(t+ 1)2t, t ∈ [−1, 0]
(1− t)2t, t ∈ [0, 1]
0, |t| > 1

.

They are stable generators for the space V p
ϕ1,ϕ2 (see [16]). Take the sampling period M = 1

and the systems defined by

Υ1f(t) := Υf(t) :=
∫ t+1/3

t
f(u)du , Υ2f(t) := Υf

(
t+

1
3
)
, Υ3f(t) := Υf

(
t+

2
3
)
.

Searching for reconstruction functions Sl with compact support as in [19] we obtain in
V p
ϕ1,ϕ2 the following sampling formula:

f(t) =
∑
n∈Z

[
Υf(n)S1(t− n) + Υf

(
n+

1
3
)
S2(t− n) + Υf

(
n+

2
3
)
S3(t− n)

]
, t ∈ R ,

where the sampling functions are:

S1(t) :=
85
44
ϕ1(t) +

1
11
ϕ1(t− 1) +

85
4
ϕ2(t)− ϕ2(t− 1)

S2(t) :=
−23
44

ϕ1(t)− 23
44
ϕ1(t− 1)− 23

4
ϕ2(t) +

23
4
ϕ2(t− 1)

S3(t) :=
1
11
ϕ1(t) +

85
44
ϕ1(t− 1) + ϕ2(t)− 85

4
ϕ2(t− 1) , t ∈ R .
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4.5 Sampling formulas as p-frames and p-Riesz bases expansions

The reconstruction method in V p
Φ (1 ≤ p ≤ ∞) given by formula (25) is stable in the follow-

ing way: For f, g ∈ V p
Φ and l = 1, 2, . . . , s the sum

∑s
l=1 ‖{(Υlf)(Mα)− (Υlg)(Mα)}‖p is

small if and only if ‖f−g‖p is also small. Indeed, consider ∆l,α := (Υlf)(Mα)−(Υlg)(Mα).
We have

‖f − g‖p =
∥∥∥∥ s∑
l=1

∑
α∈Zd

∆l,αSl,d(· −Mα)
∥∥∥∥
p

=
∥∥∥∥ s∑
l=1

∑
α∈Zd

∆̃l,αSl,d(· − α)
∥∥∥∥
p

,

where

∆̃l,α′ :=

{
∆l,α if α′ = Mα,

0 otherwise.

Hence, denoting ∆̃l = {∆̃l,α}α∈Zd and ∆l = {∆l,α}α∈Zd we obtain

‖f − g‖p =
∥∥ s∑
l=1

Sl,d ∗′ ∆̃l

∥∥
p
≤

s∑
l=1

‖∆l‖p|Sl,d|p ≤
(

max
1≤l≤s

|Sl,d|p
) s∑
l=1

‖∆l‖p ,

where we have used that for each l = 1, 2, . . . , s, the reconstruction function Sl,d ∈
L∞(Rd) ⊂ Lp(Rd), 1 ≤ p < ∞; the corresponding inequality in (4); and also that
‖∆̃l‖p = ‖∆l‖p for each l = 1, 2, . . . , s. Moreover, as in the proof of Theorems 1 and
4 we have that ‖∆l‖p ≤ Kl‖f − g‖p, l = 1, 2, . . . , s.

In particular, we have proved that, in V p
Φ , 1 ≤ p ≤ ∞, there exist two positive constants

0 < Ap ≤ Bp such that

Ap‖f‖p ≤
s∑
l=1

‖{Υlf(Mα)}‖`p ≤ Bp‖f‖p , f ∈ V p
Φ .

In other words, we have

1
Bp

s∑
l=1

‖{Υlf(Mα)}‖`p ≤
∥∥∥∥ s∑
l=1

Sl,d ∗′ {Υlf}
∥∥∥∥
p

≤ 1
Ap

s∑
l=1

‖{Υlf(Mα)}‖`p .

In fact, we have the following result:

Theorem 5 Assume that s = (detM)r; then the sequence
{
Sl,d(· −Mα) : α ∈ Zd, l =

1, 2, . . . , s
}

is a p-Riesz basis for V p
Φ , 1 ≤ p <∞. The result is also true in V∞Φ by assuming

that the continuous functions φj , Dβφj, |β| ≤ m, j = 1, 2, . . . , r, belong to W (L∞, `1).

Proof. It is sufficient to prove that the map f 7→ {(Υ1f(Mα), . . . ,Υsf(Mα))}α∈Zd
is surjective from V p

Φ −→ `p(Zd) × . . . × `p(Zd) (s times) when 1 ≤ p < ∞, or from
V∞Φ −→ c0(Zd) × . . . × c0(Zd) (s times) when p = ∞. To this end, let {bl(α)} be a
sequence in `p(Zd for 1 ≤ p < ∞ (in c0(Zd) for p = ∞), l = 1, 2, . . . , s. Define g =∑s

l=1

∑
α∈Zd bl(α)Sl,d(· −Mα) ∈ Lp(Rd). The truncated series belong to V p

Φ ; taking the
Lp limit we obtain that g ∈ V p

Φ . Finally, the interpolatory of Sl,d, which holds whenever
s = (detM)r, shows that Υlg(Mα) = bl(α) for all α ∈ Zd and l = 1, 2, . . . , s. �

In the light of the p-frames theory (see Refs. [7, 14, 24]), it can be derived that the
sequence

{
Sl,d(· −Mα) : α ∈ Zd, l = 1, 2, . . . , s

}
is a p-frame for V p

Φ , 1 ≤ p < ∞, i.e.,
there exists a positive constant C (depending on Φ and p) such that

C−1‖f‖Lp ≤
s∑
l=1

∥∥∥∥{∫
Rd
f(t)Sl,d(t−Mα)dt

}
α∈Zd

∥∥∥∥
`p
≤ C‖f‖Lp for all f ∈ V p

Φ .
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Indeed, since

V p
Φ =

{ s∑
l=1

Sl,d ∗′ al : al ∈ `p(Zd) , l = 1, 2, . . . , s
}

if 1 ≤ p <∞ ,

and V p
Φ is closed in Lp(Rd), Theorem 1 in [7] gives the result whenever Φ ⊂ L∞(Rd) for

1 < p <∞, and Φ ⊂W (L∞, `1) for p = 1.

4.6 The sampling result in VΦ(∞)

The aim in this section is to prove a generalized sampling result in the bigger space
considered in [7]:

VΦ(∞) :=
{ r∑
j=1

φj ∗′ aj : aj ∈ `∞(Zd) , j = 1, 2, . . . , r
}
.

To this end we assume that the generators φj are continuous in Rd and φj ∈ W (L∞, `1),
j = 1, 2, . . . , r. As a consequence, the series

∑
α∈Zd |φj(t − α)|, j = 1, 2, . . . , r, converges

uniformly on compact subsets of Rd; thus, the space VΦ(∞) is a subset of L∞(Rd) of
continuous functions.

Acting on VΦ(∞) we consider s convolution systems Υl, l = 1, 2, · · · , s, satisfying
that |hl|1 < ∞ whenever Υl is of type (a), and satisfying any derivative Dβφj ap-
pearing in systems of type (c) that Dβφj ∈ C(Rd) ∩ W (L∞, `1). Finally, let d(x) =(
d1(x), d2(x), . . . , ds(x)

)
be a r × s matrix with entries dj,l ∈ A, j = 1, 2, . . . , r, l =

1, 2, . . . , s, and satisfying (14), and let Sl,d be the associated reconstruction functions
given in (18). We obtain the following result:

Theorem 6 Under the above assumptions, for any function f ∈ VΦ(∞) the following
sampling theorem holds

f(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(t−Mα) , t ∈ Rd ,

where the series converges absolutely and uniformly on compact subsets of Rd.

Proof. Truncating the series that defines f ∈ VΦ(∞) yields a sequence {fm} in span{φj(·−
α) : α ∈ Zd , j = 1, 2, . . . , r} such that f(t) = limm→∞ fm(t), uniformly on compact sub-
sets of Rd, and satisfying that supm ‖fm‖∞ <∞.

By using Lemma 2, for any fm ∈ span{φj(· − α) : α ∈ Zd , j = 1, 2, . . . , r} we have

fm(t) =
s∑
l=1

∑
α∈Zd

(Υlfm)(Mα)Sl,d(t−Mα) , t ∈ Rd ,

uniformly on Rd. In order to compute correctly the limit as m → ∞ we can use the
Moore-Smith theorem which statement we include for the sake of completeness. Its proof
can be found in [9, p. 236]:

Lemma 4 Let M be a complete metric space with metric ρ, and let {xn,m}, n,m ∈ N, be
given. Assume there are sequences {yn}, {zm} in M such that
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1. lim
n→∞

ρ(xn,m, zm) = 0 uniformly in m, and

2. for each n ∈ N, lim
m→∞

ρ(xn,m, yn) = 0.

Then there is x ∈M such that

lim
m→∞

lim
n→∞

ρ(xn,m, x) = lim
n→∞

lim
m→∞

ρ(xn,m, x) = lim
m,n→∞

ρ(xn,m, x) = 0 .

Let (M,ρ) be the completion of span{φj(· − α) : α ∈ Zd , j = 1, 2, . . . , r}, where ρ
denotes the metric giving the uniform convergence on compact subsets of Rd. Hence,
VΦ(∞) ⊂M . Consider the double series

xN,m(t) :=
s∑
l=1

∑
|α|≤N

(Υlfm)(Mα)Sl,d(t−Mα) .

Now it is easy to check the hypotheses in the Moore-Smith theorem. Indeed, for condition 1
in Lemma 4 we have the inequality

∣∣xN,m(t)− fm(t)
∣∣ ≤ s∑

l=1

∑
|α|>N

|(Υlfm)(Mα)||Sl,d(t−Mα)| ,

and ‖{(Υlfm)(Mα)}‖∞ ≤ K uniformly in m. For systems of the type (a), we have
‖{(Υlfm)(Mα)}‖∞ ≤ |hj |1‖fm‖∞ ≤ |hj |1 supm ‖fm‖∞ <∞; for systems of types (b) and
(c) it comes from the assumptions. In other words,

∣∣xN,m(t)− fm(t)
∣∣ ≤ K s∑

l=1

∑
|α|>N

|Sl,d(t−Mα)| → 0 as N →∞

uniformly on compact subsets of Rd regardless m. Notice that Sl,d =
∑r

j=1 φj ∗′ dj,l
where dj,l ∈ `1(Zd). Hence, for l = 1, 2, . . . , s , the reconstruction function Sl,d is a
continuous function on Rd belonging to W (L∞, `1) (see (6)). Consequently, the series∑

α∈Zd |Sl,d(t−Mα)| converges uniformly on compact subsets of Rd.
Regarding condition 2, for each N ∈ N we have that limm→∞ ‖xN,m−xN‖∞ = 0, where

xN (t) :=
∑s

l=1

∑
|α|≤N (Υlf)(Mα)Sl,d(t −Mα); notice that we have used the Lebesgue

dominated convergence theorem for systems of type (a).
Since limm→∞ limN→∞ ρ(xN,m, f) = limm→∞ ρ(fm, f) = 0, the Moore-Smith theorem

gives that

f(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(t−Mα) , t ∈ Rd ,

uniformly on compact subsets of Rd. The convergence absolute comes easily from the
inequality

s∑
l=1

∑
|α|>N

|(Υlf)(Mα)||Sl,d(t−Mα)| ≤ C
s∑
l=1

∑
|α|>N

|Sl,d(t−Mα)| → 0

as N →∞. �

20



5 Approximation order

Assume the hypotheses in Sections 4.1 and 4.3. Consider an r × s matrix d(x) :=(
d1(x),d2(x), . . . ,ds(x)

)
with entries dj,l ∈ A, j = 1, 2, . . . , r, l = 1, 2, . . . , s, and sat-

isfying (14). Let Sl,d be the associated reconstruction functions, l = 1, 2, . . . , s. Recall
that N (M>) := Zd ∩ {M>x : x ∈ [0, 1)d} = {ij}j=1,2,...,detM . Consider also the new
points rj = M−>ij , j = 1, 2, . . . ,detM (notice that i1 = r1 = 0).

The aim of this section is to show that if the set of generators Φ satisfies the Strang-Fix
conditions, then the sampling operator

Γdf(t) =
s∑
l=1

∑
α∈Zd

(Υlf)(Mα)Sl,d(t−Mα) , t ∈ Rd ,

takes advantage of the good approximation properties of the scaled spaces σ1/hV
p

Φ (h > 0);
we are using the notation: σAf(t) := f(At), where A denotes a number or a matrix.

The set of generators Φ = {φj}rj=1 is said to satisfy the Strang-Fix conditions of
order k if there exist finitely supported sequences bj : Zd → C such that the function
φ =

∑r
j=1 φj ∗′ bj satisfies the Strang-Fix conditions of order k, i.e.,

φ̂(0) 6= 0, Dβφ̂(α) = 0, |β| < k, α ∈ Zd \ {0} . (30)

We denote by W k
p (Rd) := {f : ‖Dγf‖p < ∞ , |γ| ≤ k} the usual Sobolev space (see [1]),

and by |f |k,p :=
∑
|β|=k ‖Dβf‖p the seminorm of a function f ∈ W k

p (Rd). When kp > d

we identify f ∈W k
p (Rd) with its continuous choice.

It is well known that if Φ satisfies the Strang-Fix conditions of order k, and the
generators φj satisfy a suitable decay condition, the space V p

Φ provides approximation
order k, in the Lp-sense (1 ≤ p ≤ ∞), for any function f regular enough. For instance,
Lei, Jia and Cheney proved in [30, Theorem 5.2] that if a set Φ = {φj}rj=1 of Lp-stable
generators satisfies the Strang-Fix conditions of order k and the decay condition, φj(t) =
O
(
[1 + |t|]−d−k−ε

)
for ε > 0, then, for any f ∈W k

p (Rd), there exists fapprox ∈ σ1/hV
p

Φ such
that

‖f − fapprox‖p ≤ C |f |k,p hk , (31)

where the constant C does not depend on h and f .

5.1 L∞-approximation order of the sampling operator Γd

The sampling operator Γd : Cb(Rd) → Cb(Rd) is bounded and satisfies Γdg = g for
g ∈ VΦ(∞), whenever only systems of type (a) and (b) appear (see Lemma 3 and Theorem
4). Thus, by applying Lebesgue’s Lemma [17, p. 30] we prove in the following corollary
that an approximation fapprox ∈ σ1/hV

∞
Φ satisfying the estimation (31) for p =∞ can be

obtained by means of the operator Γd. Specifically, fapprox = Γhdf where

Γhd := σ1/hΓdσh, h > 0.

Moreover, it proves that the approximation given by Γhd is, up to a constant factor, as
good as the best approximation from σ1/hV

∞
Φ .
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Corollary 1 Assume that there are only systems of types (a) and (b). Then, the following
estimation holds:

‖f − Γhdf‖∞ ≤ (1 + ‖Γd‖) inf
g∈σ1/hV

∞
Φ

‖f − g‖∞, f ∈W k
∞(Rd),

where ‖Γd‖ denotes the operator norm. If the set of generators Φ = {φj}rj=1 satisfies
φj(t) = O

(
[1 + |t|]−d−k−ε

)
with ε > 0 and the Strang-Fix conditions of order k then,

‖f − Γhdf‖∞ ≤ C hk |f |k,∞ , f ∈W k
∞(Rd),

where the constant C does not depend on h and f .

Proof. Notice that the scaled operator Γhd : Cb(Rd)→ Cb(Rd) is a bounded operator with
the same norm as Γd, that σ1/hV

∞
Φ ⊂ Cb(Rd), and that Γhdg = g for g ∈ σ1/hV

∞
Φ . Then,

for f ∈W k
∞(Rd) and g ∈ σ1/hVΦ(∞) we have

‖f − Γhdf‖∞ ≤ ‖f − g‖∞ + ‖Γhdg − Γhdf‖∞ ≤ (1 + ‖Γd‖)‖f − g‖∞.

As σ1/hV
∞

Φ ⊂ Cb(R), the second assertion of the corollary is a consequence of the men-
tioned result in [30]. �

5.2 Lp-approximation order in case of systems of type (a) (1 ≤ p <∞)

For 1 ≤ p <∞ we prove an analogous result to Corollary 1 whenever only systems of type
(a) appear.

Corollary 2 Assume kp > d and that all the systems Υl satisfy Υlf = f ∗ hl with hl ∈
Lq(Rd), l = 1, . . . , s (1/p+ 1/q = 1). Then

‖f − Γhdf‖p ≤ (1 + ‖Γd‖) min
g∈σ1/hV

p
Φ

‖f − g‖p, f ∈W k
p (Rd),

where ‖Γd‖ denotes the norm of the operator Γd : Lp(Rd) → Lp(Rd). If the set of
generators Φ = {φj}rj=1 satisfies φj(t) = O

(
[1 + |t|]−d−k−ε

)
with ε > 0, and the Strang-Fix

conditions of order k, then

‖f − Γhdf‖p ≤ C hk |f |k,p , f ∈W k
p (Rd),

where the constant C does not depend on h and f .

Proof. Using inequalities (4) and (5) we easily prove that Γd : Lp(Rd) → Lp(Rd) is a
bounded operator. Theorem 1 proves that Γdg = g for g ∈ V p

Φ . Now, proceeding as in
Corollary 1, Lebesgue’s Lemma jointly with (31) yield the result. �

5.3 L2-approximation order

For systems of type (b) or (c), the operator Γd is not bounded in the Lp-norm and,
consequently, in order to obtain an Lp-approximation result we cannot apply Lebesgue’s
Lemma. However, returning to the Hilbert space case, the results by Jetter and Zhou in
[25] allow us to prove that the sampling operator Γd gives approximation order k, in case of
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a unique generator φ satisfying the Strang-Fix conditions of order k. The aforementioned
work [25] deals with the approximation order by means of linear operators of the type:

Qf(t) =
s∑
l=1

∑
α∈Zd

[ ∑
|β|≤Nl

∫
Dβf(x+ α)dµl,β(x)

]
ϕl(t− α) , (32)

where µl,β denotes a Borel finite measure. According to the notation in [25], let Ωl denote
Ωl(w) :=

∑
|β|≤Nl

(2πiw)βµ̂l,β(w). In [25] it is proved that if the following conditions:

(C1)
∣∣∣1− s∑

l=1

ϕ̂l(w)Ωl(w)
∣∣∣ ≤ C1 |w|k,

(C2)
∑

α∈Zd\{0}

∣∣∣ s∑
l=1

ϕ̂l(w + α)Ωl(w)
∣∣∣2 ≤ C2 |w|2k,

(C3)
∑

α∈Zd\{0}

|w + α|−2k
∣∣∣ s∑
l=1

ϕ̂l(w)Ωl(w + α)
∣∣∣2 ≤ C3, and

(C4)
∑

α∈Zd\{0}

|w + α|−2k
∑

β∈Zd\{0}

∣∣∣ s∑
l=1

ϕ̂l(w + β)Ωl(w + α)
∣∣∣2 ≤ C4,

are satisfied, a.e. on [−1/2, 1/2)d, then the operator Q gives approximation order k. In
next theorem we prove that the sampling property Γdf = f for f ∈ V 2

φ and the Strang-Fix
conditions of order k for φ imply that the operator Q := σMΓdσM−1 satisfies the above
conditions and, as a consequence, the operator Γd gives approximation order k. Recall
that m denotes the largest order of the partial derivatives that appear in systems of type
(c) (m = 0 if there are only systems of type (a) or (b)).

Theorem 7 Assume that k > d/2 +m and that the generator φ of the space V 2
φ satisfies

D̂βφ ∈W k+d
1 (Rd) for |β| ≤ m, |w|mφ̂(w) ∈ L2(Rd), and the Strang-Fix conditions of order

k. Then,
‖Γhdf − f‖L2(Rd) ≤ C |f |k,2 hk, f ∈W k

2 (Rd), (33)

where the constant C is independent of f and h > 0.

First of all, notice that if the generator φ has compact support and the function
|φ̂(w)|(1 + |w|)d+m+ε is bounded for some ε > 0, then the hypotheses, D̂βφ ∈ W k+d

1 (Rd)
for |β| ≤ m, and |w|mφ̂(w) ∈ L2(Rd), in the above theorem, are satisfied. Indeed, in this
case, |w|mφ̂(w) ∈ L∞(Rd) ⊂ L2(Rd) and D̂βφ ∈ L1(Rd). As a consequence of Bernstein’s
inequalities (see [31]), we obtain that D̂βφ ∈Wn

1 (Rd) for all n ∈ N.

Before proving the theorem we need two technical lemmas.

Lemma 5 Assume that |β| ≤ k and D̂βφ ∈ W k+d
1 (Rd). If φ satisfies the Strang-Fix

conditions of order k (30), then there exists a constant C such that∑
α∈Zd\{0}

|(w + α)βφ̂(w + α)| ≤ C |w|k, w ∈ [−1/2, 1/2)d .
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Proof. From the Strang-Fix conditions we have that DγD̂βφ(α) = Dγ
[
(2πi·)βφ̂

]
(α) = 0,

for α ∈ Zd \ {0}, |γ| < k. Using the Taylor formula we obtain that, for all α ∈ Zd \ {0},

|D̂βφ(w + α)| ≤ C |w|k max
|γ|=k

‖DγD̂βφ‖L∞(U+α), w ∈ U, (34)

where U := [−1/2, 1/2)d and the constant C does not depend on α. Using the Sobolev
imbedding W k+d

1 (U) ↪→W k
∞(U) (see [1, p. 85]), we obtain that

max
|γ|=k

‖DγD̂βφ‖L∞(U+α) ≤ ‖D̂βφ (·+ α)‖Wk
∞(U) ≤ C ‖D̂βφ (·+ α)‖Wk+d

1 (U) .

Hence,
|D̂βφ(w + α)| ≤ C|w|k‖D̂βφ (·+ α)‖Wk+d

1 (U) , w ∈ U ,

where the constant C does not depend on α; as a consequence, the inequality∑
α∈Zd\{0}

|D̂βφ(w + α)| ≤ C|w|k‖D̂βφ‖Wk+d
1 (Rd)

holds. �

Lemma 6 Let g be a function such that ĝ ∈ L2(Rd). Then, the Poisson summation
formula

∑
α∈Zd ĝ(w + α) =

∑
α∈Zd g(−α)e2πiα·w holds in the L2([0, 1)d) sense.

Proof. Since ĝ ∈ L2(Rd) the function
∑

α∈Zd ĝ(w + α) ∈ L2[0, 1)d; as ĝ ∈ L1(Rd) =
L1(Rd), the dominated convergence theorem gives the Fourier coefficients∫

[− 1
2
, 1
2

)d

∑
α∈Zd

ĝ(w + α)e−2πiβ·wdw =
∫

[− 1
2
, 1
2

)d

∑
α∈Zd

ĝ(w + α)e−2πiβ·(w+α)dw

=
∑
α∈Zd

∫
[− 1

2
, 1
2

)d
ĝ(w + α)e−2πiβ·(w+α)dw =

∫
Rd
ĝ(w)e−2πiβ·wdw = g(−α) .

�

Proof of Theorem 7. For the sake of simplicity, we prove the theorem for the case of
systems of type (c) (any system of type (b) can be considered as a particular case). For
systems of type (a) the proof follows the same steps in an easier way.

Throughout the proof C denotes a generic constant, not necessarily the same in any
place. An equivalent estimation to (33) is ‖Γdf − f‖L2(Rd) ≤ C |f |k,2 for f ∈ W k

2 (Rd).
Since |σMf |k,2 ≤ C|f |k,2 for some constant independent of f , in order to prove this last
estimation, it is sufficient to prove that ‖Qf − f‖L2(Rd) ≤ C |f |k,2 for all f ∈ W k

2 (Rd),
where Q := σMΓdσM−1 . Thus, we can derive our theorem by proving that the operator
Q satisfies the conditions of Theorem 2.1 in [25].

First, notice thatQ = σMΓdσM−1 is an operator of the type considered in [25]. Namely,
it can be expressed as in (32) where

ϕl = σMSl and dµl,β(x) =
∑

|β|≤|γ|≤Nl

cl,γaγ,βδ(x−M−1dl,γ)dx ,

being aβ,γ the constants satisfying DβσM−1 =
∑
|γ|≤|β| aβ,γσM−1Dγ .
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The properties of the Fourier transform allow us to check that aβ,γ are the constants
satisfying (2πiw)β =

∑
|γ|≤|β| aβ,γ(2πiM>w)γ . By using this fact it is easy to obtain that

Ωl(w) :=
∑
|β|≤Nl

cl,β(2πiM−>w)βe2πidl,β ·M−>w.

In order to apply [25, Theorem 2.1], along with conditions (C1)–(C4), the equality
Q̂f(w) =

∑s
l=1 σ̂MSl(w)

∑
α∈Zd f̂(w + α)Ωl(w + α) a.e., must be verified in the Fourier

domain for any function f ∈ W k
2 (Rd). This representation can be obtained by applying

Lemma 7.2.1 in [13], and the Poisson summation formula in Lemma 6 with g(t) = Dγf(t+
M−1dl,β), |γ| ≤ |β|. To this end, we need ĝ ∈ L2(Rd). Indeed,[ ∑

α∈Zd\{0}

|w + α|γ |f̂(w + α)|
]2
≤

∑
α∈Zd\{0}

|w + α|2γ−2k
∑

α∈Zd\{0}

|w + α|2k|f̂(w + α)|2 .

Hence, since 2k − 2γ > d,∫
[0,1)d

[ ∑
α∈Zd\{0}

|w + α|γ |f̂(w + α)|
]2
dw ≤

∥∥∥ ∑
α∈Zd\{0}

|w + α|2γ−2k
∥∥∥
L∞([0,1)d)

|f |2k,2 <∞.

Next, we obtain an expression for the projection condition d(w)G(w) = [1, 0, . . . , 0] in
Lemma 1, in terms of φ̂ and Ωl. Applying the Poisson summation formula, Lemma 6, [13,
Lemma 7.2.1], and that |w|mφ̂(w) ∈ L2(Rd), we have

gl,1(w) =
∑
α∈Zd

Υlφ(α)e−2πiα·w =
∑
α∈Zd

∑
|β|≤Nl

cl,βD
βφ(α+ dl,β)e−2πiα·w

=
∑
|β≤Nl

cl,β
∑
α∈Zd

(2πi(w + α))βφ̂(w + α)e2πidl,β ·(w+α) =
∑
α∈Zd

φ̂(w + α)Ωl(M>[w + α]), a.e.

As a consequence, the expression
∑s

l=1 dl(w + rj)gl,1(w) = δj−1 can be written as

s∑
l=1

dl(w + rj)
∑
α∈Zd

φ̂(w + α)Ωl(M>[w + α]) = δj−1, a.e.

Having in mind Lemma 5 and that the functions dl are bounded, we obtain∣∣∣δj−1 −
s∑
l=1

dl(w + rj)φ̂(w)Ωl(M>w)
∣∣∣ =

∣∣∣ s∑
l=1

dl(w + rj)
∑

α∈Zd\{0}

φ̂(w + α)Ωl(M>(w + α))
∣∣∣

≤ C |w|k, a.e. on [−1/2, 1/2)d,

which proves that condition (C1) is satisfied. Besides, since φ̂ ∈ C(Rd) and φ̂(0) 6= 0, we
have that

∣∣∣∑s
l=1 dl(w + rj)Ωl(M>w)

∣∣∣ ≤ C |w|k, a.e. on [−1/2, 1/2)d, for j = 2, . . . , s.

Then, taking into account that Zd = M>Zd+{i1, i2, . . . , idetM}, Lemma 5 and the stability
condition supw∈Rd

∑
α∈Zd |φ̂(w + α)|2 <∞ a.e., and denoting

Λj,α(w) =
∣∣∣ s∑
l=1

dl(w + rj)φ̂(w + α+ rj)Ωl(M>w)
∣∣∣2 ,
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we obtain that∑
α∈Zd\{0}

∣∣∣ s∑
l=1

σ̂MSl(M>w + α)Ωl(M>w)
∣∣∣2

=
∑

α∈Zd\{0}

∣∣∣ s∑
l=1

dl(w +M−>α)φ̂(w +M−>α)Ωl(M>w)
∣∣∣2

=
s∑
j=2

∑
α∈Zd

Λj,α(w) +
∑

α∈Zd\{0}

Λ1,α(w)

=
s∑
j=2

∣∣∣ s∑
l=1

dl(w + rj)Ωl(M>w)
∣∣∣2 ∑
α∈Zd\{0}

∣∣∣φ̂(w + α+ rj)
∣∣∣2 +

∑
α∈Zd\{0}

Λ1,α(w)

≤ C |w|2k, a.e. on [−1/2, 1/2)d,

which proves condition (C2). The weaker conditions (C3) and (C4) in [25] are easily
checked having in mind that we have assumed that k > d/2 +m. �
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