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A General Sampling Theorem Associated with
Differential Operators

A. G. Garcia1 and M. A. Hernandez-Medina2

In this paper we prove a general sampling theorem associated with differential
operators with compact resolvent. Thus, we are able to recover, through a
Lagrange-type interpolatory series, functions defined by means of a linear inte-
gral transform. The kernel of this transform is related with the resolvent of the
differential operator. Most of the well-known sampling theorems associated with
differential operators are shown to be nothing but limit cases of this result.

1. INTRODUCTION

The classical Whittaker-Shanonn-Kotel'nikov (WSK) sampling theorem
given by the formula
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for some FeL2[-n, ri]. The sampling series (1) converges absolutely on C,
and uniformly on horizontal strips of C (in particular, on R).

holds for functions in L2(R) whose Fourier transform has support in [-n, n],
i.e.,
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One direction in which this therorem has been generalized is replacing
the kernel function, eitw, by a more general kernel K(co, A), leading to the
following generalization by Kramer [6]: Let K(w, A) be a function, continu-
ous in A such that, as a function of co, K(a, A)eL2(I) for every real number
A, where / is an interval of the real line. Assume that there exists a sequence
of real numbers {An}neZ such that {K(co, An)}nsZ is a complete orthogonal
sequence of functions of L2(I). Then for any f of the form

where FeL2(I), we have

with

The series (2) converges absolutely and uniformly wherever | |K( . , k)||L2(I) is
bounded. In particular, if I= [-n, n], K(a>, A) = eiaw and {An = n}neZ, we get
the WSK sampling theorem.

One way to generate the kernel K(o, A) and the sampling points
{An}neZ is to consider Sturm-Liouville boundary-value problems [10,13].
Another possibility is to use the Green functions method described in Ref.
[12]. For many self-adjoint boundary-value problems, the Green function
can be written in the form

where {An}n = 0 are the eigenvalues and {</ n} n = 0 the corresponding eigen-
functions. The Green function method can also be used to derive sampling
theorems associated with Fredholm integral operators [1], and, as we will
see in this paper, to derive sampling theorems associated with a densely
defined self-adjoint operator whose resolvent is a Hilbert-Schmidt operator.

A general way to generate the kernel K(x, A) is to consider a symmetric,
densely defined, differential operator A: D(A)aL 2 (Q) —>L2(Q) with com-
pact resolvent R*. for A in the resolvent set. In this case, we have a sequence
of eigenvalues and an orthornormal basis of eigenfunctions (see [4], [5] for
the general theory). Thus, we can derive, at least in the cases where all the
eigenspaces are one-dimensional, a kernel verifying all the requirements
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in Kramer's theorem. Namely, let

where Q is a domain of Rn, geL2(Q) and P(L) is the canonical product of
the eigenvalues, provided this product exists. Multiplication by P(A)
removes the singularities in the resolvent and, therefore, Kg(x, A) can be
defined on Q x C. The hypothesis about the existence of P(A) will allow
us to write the sampling functions in (3) as Lagrange-type interpolation
functions.

Defining kernels as in (4) allows one degree of freedom: The choice of
function g. Through particular choices we will obtain that most of the well-
known sampling theorems associated with differential or integral operators
[1,10,12] are limit cases of the main result of this paper.

2. A GENERAL SAMPLING THEOREM

Let A: ^(A)eL2(Q)->L2(Q) be a symmetric (formally self-adjoint)
linear operator, densely defined on L2(Q). Assume that there exists an
inverse operator T=A - 1 compact and defined on L2(Q). We know from
the spectral theorem for symmetric compact operators defined on a Hilbert
space [7] that Thas discrete spectrum. Moreover, if { / J n } n = o is the sequence
of eigenvalues of T, then limn->o |jn| = 0. We may assume

Moreover, the eigenspace associated with each eigenvalue jun is finite dimen-
sional. Set kn = dim Ker(tnI- T)< oo. Note that 0 is not an eigenvalue of
T, so the sequence {0n}n=0 of eigenfunctions of T is a complete orthonormal
system (applying the Gram-Schmidt method in each eigenspace) of L2(£2).
The sequences {Kn = ju - 1 } n = 0 and { < t n } n = 0 are, respectively, the sequence of
eigenvalues and the sequence of associated eigenfunctions of the operator
A. Since limn_>oo |jun] = 0, we have

and limn->oo|rn| = oo.
We assume that the exponent of convergence of the sequence {An}n=0

is finite, i.e.,
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Hence, we can define the canonical product, P(/l), associated with the
sequence of eigenvalues {An}n=0 as

where p is the smallest non-negative integer larger than r\ -1. P(A) is an
entire function whose zeros are {A n } n = 0 .

The following lemma, which appears in [11], will be needed.

Lemma 1. Let K be a compact subset of C. Then, there exists a con-
stant C^ such that

Now let us fix a function geL2(Q). We define the kernel

where R*. = (UI-A)-1 is the resolvent operator of A. Under these conditions
the following sampling theorem holds

Theorem 1. Let f be defined as

where FeL2(Q,). Then, f is an entire function which can be recovered from
its values on the eigenvalues {An}n = 0 of A through the Lagrange-type inter-
polation series

where P(A) is given by (5). The convergence of the series in (6) is absolute
and uniform on compact subsets of C.

Proof. Since dim Ker(hnId-A) = kn, we can arrange the sequence of
eigenfunctions of A as {$n,i}, where ne N0 and i - 1, 2 , . . . , kn. Since [R^g]
can be expanded in L2(ft) [7] as

the kernel 3g(x, A) is a function of L2(Q) in xe£l and an entire function in
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A€ C. Applying the Cauchy-Schwarz inequality, we conclude that F(I) is
well defined for any A€ C.

If we expand F and J>g(., A) respect to the basis {$n,i}, we obtain

and

Now, using Parseval's identity, we have

On the other hand

and since

we obtain

Hence, we can write (8) as
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Let KcC be a compact subset of C. We will prove that the series in
(9) converges absolutely and uniformly on K. Indeed,

The last inequality follows from the Cauchy-Schwarz inequality and
Lemma 1. Since F,geL2(Q), the last term in (10) goes to 0 as N->oo,
regardless of Ae. '#. The uniform convergence of the series in (9) on compact
subsets of C implies that f(A) is an entire function. D

3. SAMPLING THEOREMS AS LIMIT CASES

As we pointed out in the Introduction, in this section we will prove
that most of the well-known sampling theorems are indeed limit cases of
Theorem 1. We concentrate on two cases.

3.1. Sampling Theorems Associated with Sturm-Liouville Problems: The
Singular Case on the Halfline

In [10] Zayed extends the Weiss-Kramer sampling theorem [6,9] to a
singular Sturm-Liouville problem on the halfline [0, oo).

Consider the following singular Sturm-Liouville boundary-value
problem:
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where q(x) is a continuous function on [0, co). Let </>(x, A), 6(x, A) be the
solutions of (11) such that

From the Weyl-Titchmarsh theory [8] it follows that there exists a complex
valued function moo(A) such that for every nonreal A, Eq. (11) has a solution
Voo(x, A) = 9(x, X) + m o o (X)Q(x , A) belonging to L2(0, co). In the so-called
limit-point case woo(A) is unique, while in the limit-circle case there are
uncountably many such functions (see [8] for details).

The function mm (A) is analytic in C - 05 and, if it has poles on the real
axis, they are all simple. Although, in general, the function moo(A) cannot
be extended to a meromorphic function defined on C, we assume in what
follows that moo (A) is a meromorphic function, real valued on the real axis
and whose singularities are simple poles on the real axis. For moo(A) to
satisfy these assumptions, it is sufficient [8] that l im x - > x q(x)= + co. The
poles of moo(A) are the eigenvalues of problem (11-12). These form an
increasing sequence of real numbers, {An}n=0 , whose only accumulation
point is co. Without loss of generality we may assume that all the eigen-
values are different from zero. The eigenfunction corresponding to the
eigenvalue An is given by <j>n(x) = />(x, An).

Theorem 2. (see [10]. Consider the singular Sturm-Liouville problem

where q(x) is a continuous function on [0, GO). Assume that moo(A) is a
meromorphic function, real valued on the real axis and whose only singular-
ities are simple poles {An}n=0 on the positive real axis. Further, we suppose
that its exponent of convergence is finite.

Let f be defined as

where FeL2(0, co), $(x, A) = P(X)if<a(x, A), and P(A) is the canonical prod-
uct (5) associated with (An}n = 0 . Then, f is an entire function that can be
recovered through the Lagrange-type interpolation series

The convergence of the series is absolute and uniform on compact subsets
of C.
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In order to obtain Theorem 2 as a limit case of Theorem 1, we have to
rewrite the problem (11-12) in the language of the differential operator
theory. First, we are reminded how to define a self-adjoint operator
A: D(A)cL2(0,oo)->L2(0, oo) associated with the problem (11-12). Let
T(r) = T| i /w, where t f = - f " + qf and ^(T) = {y ,y '^AC l o c[0, CO)|TJS
L2(0, GO)}. Following the general theory in Edmund and Evans [5], we can
construct a self-adjoint extension A: y(A)^L2(0, co)->L2(0, oo) of TO(T),
the closure of the restriction of T(r) to

In the limit-point case, the maximal operator T(r) associated with the
problem (11-12) is self-adjoint, i.e., A = T(T) and 'S(A) = r/(r). On the
other hand, in the limit-circle case, we need to add a suitable boundary
condition at the infinity to the operator T(T) in order to obtain a densely
defined and self-adjoint operator in L2(0, co)A: y(A)czL2(0, co)->L2(0, oo)
(see [5], [8] for details).

Under the hypotheses of Theorem 2, the resolvent operator of the self-
adjoint operator A associated with the problem (11-12) is compact. Indeed,
the spectrum is discrete and the sequence of eigenfunctions constitutes an
orthogonal basis of L2(0, oo) [5],

Now, we show that Zayed's theorem is a consequence of Theorem 1.
Consider the singular Sturm-Liouville problem (11-12) and assume the
hypotheses in Theorem 2 hold. Let A: p(A)cL2(0, oo)->L2(0, oo) be a self-
adjoint operator associated with the problem and let R*. be its compact
resolvent operator. Since y(./) is a dense subset of L2(0, oo), there exists
a sequence {gn}n=0 cL2(0, oo) such that

in L2(0, oo). We note that \j/m(x, .) can be extended to C - {Xn}n=0 by means
of the formula

Let 3>(x, A) = P(A) <//«, (x, A) and f(K) = /" O(x, X)F(x) dx, where Fe
L2(0, oo). If we consider fn(A) = /"<&n(x, tyg(x)dx, where *n(x,A) =
P(X)Rxgn(x), using Theorem 1, for each neN0 we have
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Taking limits as n-»oo, we will prove that limn->cofn(/l) =f(A) and

and therefore we obtain the sampling expansion in Theorem 2.
In fact, from (13) we have that <!n(• , A)-+<&(•, A) in L2(0, oo) for

AeC - {An}n=0 . Using the Cauchy-Schwarz inequality, we obtain that

Now, we prove that limn->oofn(Am) =f(Am) for any eigenvalue Am. Taking
into account that for any m

we can choose the sequence {gn}n= 0cL2(0, oo) verifying (13) and the
condition

Now, from (14) and (16) we have that

and

Since limn - > x ,(gn ,^m)= 1 for any m, we have that limn_>oofn(Am) =
f(Am) for any m.

The interchange of the limit and the series in (15), is a consequence of
the Moore-Smith Theorem, the proof of which can be found in [3].

Theorem 3. Let M be a complete metric space with metric p, and let
{xn,m}, n,me. N0, be given. Assume there are sequences {yn}, {zm} in M such
that (1) l imn - > g op(xn , m , zm) = 0 uniformly in m, and (2) for each ne
N0, limm->oc p(xn,m,yn) = 0. Then there is xeM such that
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Indeed, if we denote

where Ae, '%\. '#a fixed compact of C, then, xn,m(K) ->zm(A) =fm(/L) as n-»co
and

as m—><x>. The first limit above is uniform in m. Indeed, using (10), (13),
and (16) we conclude that

where $>(x,K) = P(X)^(x, A) and M is a suitable constant. We have that
(see [11, p. 120])

where C.f is a constant depending only of %', therefore, the right-hand term
of (17) goes to zero as n—>x> regardless of m, and of K&.W.

3.2. Operators Whose Resolvent is of Hilbert-Schmidt Type

When the resolvent operator R^ of a symmetric, densely defined, oper-
ator A: 2?(A)dL(C)->L 2(&) is of Hilbert-Schmidt type, it has a sym-
metric kernel G^eL2Q. x £2) [2], such that

for any feL2(Q). In this case, it is possible to obtain a sampling theorem
where the resolvent kernel will determine the class of functions that can be
recovered through a sampling expansion.

Fixing yoeQ, we define the kernel

where P(X) is the canonical product associated with the sequence of eigen-
values, {An}n = 0 , of A, Since the resolvent operator is of Hilbert-Schmidt
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type, we have that En= 0 1 /|fn|
2 < oo. Therefore, the canonical product P(K)

will be

Theorem 4. Any function f defined as

where FeL2(£2), is an entire function, which can be recovered through a
Lagrange interpolation-type series as

The convergence of the series in (19) is absolute and uniform on compact
subsets of C.

Proof. It is known [2] that the kernel G^ can be written as

where {0n,i}i= 1 are the eigenfunctions associated with the eigenvalue /Ln and
kn is the dimension of the eigenspace associated with Kn. Without loss of
generality, we suppose that { > n , i } is an orthonormal basis of L2(£i).

From (20), we have that *P(x, A) is a function of L2(Q) in x and an
entire function in A. Using the Cauchy-Schwarz inequality, we conclude
that f is well defined.

Expanding F and *P( •, A) with respect to the basis of eigenfunctions,
we obtain
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and

Applying Parseval's identity, we have that

From this we obtain f(An) on the eigenvalues as in Theorem 1. Indeed,

Therefore

Substituting in (21) we obtain that

Let J^cC be a compact subset of C. We will prove that the series (19)
converges absolutely and uniformly on 3if. There exist R>0 and M0eN0

such that JTc {2: |z| £ R} and |An| s 2R for any n > M0 + 1. Let N > M0

The series in the right-hand side converges since it has the same character
as

and this series converges applying Parseval's Theorem to G 0 ( x , y 0 ) eL 2 Q) .
Hence, there exists a positive constant C#, independent of Ae Jf, such that
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Now, applying the Cauchy-Schwarz inequality, we obtain

Since FeL2(Q), the last series above goes to zero as N->oo regardless of
Ae J>T. The uniform convergence of the series in (19) on compact subsets of
C implies that f(A) is an entire function. D

Formally, if we take a sequence { g n } n = 0 converging to 8y0, the Dirac
delta in y0, then Rign(x)->Gi(x, y0) in (18) and this suggests that Theorem
4 is a limit case of Theorem 1. More precisely, let A: 0!¥(A)^L2(Q.)->L2(£l)
be a symmetric operator, densely defined and whose resolvent operator, R*.,
is of Hilbert-Schmidt type. Let Gi(x,y)eL2(Q x £}) be the resolvent kernel
of Hi in (18).

Fixing70eQ, we have that Gn(x, j>0)e£2(£i) and since <?(j/) is a dense
subset of L2(Q), there exists a sequence {gn}n=0cL2(Q) such that

Let Q(x, A) = P(A)GjL(x, y0) and f(A) = /„<&(.*, X)F(x) dx, where Fe L2(Q).
If we consider

where <bn(x, A,) = P(X)Ragn(x), using Theorem 1 for each n€ N0 we have
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From (22) we have that <&„(•, A)-»<!>(•, A) in L2(&) as n-»oo for
AeC-{An}n = 0 . Applying the Cauchy-Schwarz inequality, we obtain that
limn->co fn(A)=f(A) for AeC - { A n } n = 0 .

Next, we prove that limM_>oofn(Am) =f(Am) for any eigenvalue Am.
Taking into account (7) and (20), we can choose the sequence
{gn}n=0cL2(£2) verifying (22) and such that

Now, from (7) and (20) we have that

and

Since limn->oo (gn, tym,i)= <j> m , i (y0) for any m and 1<,i<,km, it follows that
l im n - > c o f n(rm) =f (A m ) for any m. Taking limits as n—>oo in (23) we obtain

Again the interchange of the limit and the series in (24) follows from the
Moore-Smith Theorem as in the subsection 3.1.

REFERENCES

1. M. H. Annaby and M. A. El-Sayed, Kramer-type sampling theorems associated with Fred-
holm integral operators, Methods Appl. Anal. 2, 76-91 (1995).

2. J.-P. Aubin, Applied Functional Analysis, Wiley, New York, 1979.
3. J. J. Benedetto, Real Variable and Integration, B. G. Teubner, Stuttgart, 1976.
4. N. Dunford and J. T. Schwartz, Linear Opertors, Part II: Spectral Theory, Wiley, New

York, 1988.
5. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon

Press, Oxford, 1987.
6. H. P. Kramer, A generalized sampling theorem, J. Math. Phys. 63, 68-72 (1957).



7. C. Swartz, An Introduction to Functional Analysis. Marcel Dekker, New York, 1992.
8. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential

Equations, Part I. Clarendon Press, Oxford, 1962.
9. P. Weiss, Sampling theorems associated with Sturm-Liouville systems, Bull. Amer. Math.

Soc. 63, 242 (1957).
10. A. I. Zayed, On Kramer sampling theorem associated with general Sturm-Liouville prob-

lems and Lagrange interpolation, SIAM J. Appl Math. 51, 575-604 (1991).
11. A. I. Zayed, Advances in Shannon's Sampling Theory, CRC Press, Boca Raton, FL, 1993.
12. A. I. Zayed, A new role of Green's function in interpolation and sampling theory, J. Math.

Anal. Appl. 175, 222-238 (1993).
13. A. I. Zayed, G. Hinsen, and P. L. Butzer, On Lagrange interpolation and Kramer-type

sampling theorems associated with Sturm-Liouville problems, SIAM J. Appl. Math. 50,
893-909 (1990).

General Sampling Theorem 161


