On the Analytic Sampling Theory (a link with the m-function theory)

A. G. García¹ M. A. Hernández-Medina² L. L. Littlejohn ³

¹Department of Mathematics Universidad Carlos III de Madrid

²Department od Applied Mathematics E.T.S.I.T., U.P.M

³Departament of Mathematics and Statistics Utah State University at Logan

m-function Conference, 2004

- 1 What does the Sampling theory mean?
- f 2 The space ${\cal H}$
 - ullet The Hilbert space structure of ${\cal H}$
 - ullet Analyticity of the functions in ${\cal H}$
 - ullet Sampling in ${\cal H}$
- Generic examples
 - Sampling theory associated with the resolvent kernel
 - Sampling associate with Indeterminate moment problem

- Linear space $\mathcal{H} = \{f : \Omega \longrightarrow \mathbb{C}\}$
- $\{t_n\}\subset\Omega$
- $\{S_n\}\subset\mathcal{H}$

- Linear space $\mathcal{H} = \{f : \Omega \longrightarrow \mathbb{C}\}$
- $\{t_n\}\subset\Omega$
- $\{S_n\}\subset \mathcal{H}$

Sampling Expansion

$$f(t) = \sum_{n} f(t_n) S_n(t), \quad f \in \mathcal{H}.$$

- Linear space $\mathcal{H} = \{f : \Omega \longrightarrow \mathbb{C}\}$
- $\{t_n\}\subset\Omega$
- ullet $\{S_n\}\subset \mathcal{H}$

Sampling Expansion

$$f(t) = \sum_{n} f(t_n) S_n(t), \quad f \in \mathcal{H}.$$

 \mathcal{H} Hilbert space and $\{S_n\}$ basis in $\mathcal{H} \Rightarrow S_n(t_m) = \delta_{n,m}$.

Sampling Expansion

$$f(t) = \sum_{n} f(t_n) S_n(t), \quad f \in \mathcal{H}.$$

 \mathcal{H} Hilbert space and $\{S_n\}$ basis in $\mathcal{H} \Rightarrow S_n(t_m) = \delta_{n,m}$.

In general

$$f(t) = \sum_{n} \left[f(t_n) S_n(t) + \widetilde{f}(t_n) \widetilde{S}_n(t) \right]$$

 $(\widetilde{f} \text{ a related function with } f)$

The Shannon's Example

The space ${\cal H}$

- III separable Hilbert space
- $\bullet \ K:\Omega\subset \mathbb{C}\to \mathbb{H}$

The space ${\cal H}$

- \mathbb{H} separable Hilbert space
- $K: \Omega \subset \mathbb{C} \to \mathbb{H}$

For $x \in \mathbb{H}$ define

$$f(t) := \langle K(z), x \rangle_{\mathbb{H}}, \quad z \in \Omega$$

Definition

Consider the anti-linear mapping:

$$T: \mathbb{H} \ni x \mapsto f \in \mathcal{H}$$

$$\mathcal{H} = \mathcal{T}(\mathbb{H})$$

The space ${\cal H}$

- III separable Hilbert space
- $K: \Omega \subset \mathbb{C} \to \mathbb{H}$

For $x \in \mathbb{H}$ define

$$f(t) := \langle K(z), x \rangle_{\mathbb{H}}, \quad z \in \Omega$$

Definition

Consider the anti-linear mapping:

$$T: \mathbb{H} \ni x \mapsto f \in \mathcal{H}$$

$$\mathcal{H} = \mathcal{T}(\mathbb{H})$$

Properties of ${\cal H}$

- T is one-to-one
 - $\Leftrightarrow \{K(z)\}_{z\in\Omega}$ is a complete set in \mathbb{H}
 - \Leftrightarrow T is an isometry onto \mathcal{H} .
- ullet \mathcal{H} is a RKHS: If $k(z,w) = \langle K(z), K(w) \rangle_{\mathbb{H}}$ then

$$f(w) = \langle f, k(\cdot, w) \rangle_{\mathcal{H}} \ (\Rightarrow |f(w)| \le ||f||_{\mathcal{H}} ||K(w)||_{\mathbb{H}})$$

Properties of ${\cal H}$

- T is one-to-one
 - \Leftrightarrow $\{K(z)\}_{z\in\Omega}$ is a complete set in \mathbb{H}
 - \Leftrightarrow T is an isometry onto \mathcal{H} .
- ullet $\mathcal H$ is a RKHS: If $k(z,w)=\langle K(z),K(w)
 angle_{\mathbb H}$ then

$$f(w) = \langle f, k(\cdot, w) \rangle_{\mathcal{H}} \ (\Rightarrow |f(w)| \le ||f||_{\mathcal{H}} ||K(w)||_{\mathbb{H}})$$

Properties of ${\cal H}$

- T is one-to-one
 - \Leftrightarrow $\{K(z)\}_{z\in\Omega}$ is a complete set in \mathbb{H}
 - \Leftrightarrow T is an isometry onto \mathcal{H} .
- ullet \mathcal{H} is a RKHS: If $k(z,w)=\langle \mathcal{K}(z),\mathcal{K}(w)
 angle_{\mathbb{H}}$ then

$$f(w) = \langle f, k(\cdot, w) \rangle_{\mathcal{H}} \ (\Rightarrow |f(w)| \leq ||f||_{\mathcal{H}} ||K(w)||_{\mathbb{H}})$$

Analyticity of the functions in ${\cal H}$

The RKHS ${\cal H}$ is a space of analytic functions in Ω

- $\iff K:\Omega \longrightarrow \mathbb{H} \text{ is analytic in } \Omega$
- $\Leftrightarrow \{S_n\}_{n=1}^{\infty}$ are analytic in Ω and $\|K(\cdot)\|$ is locally bounded,

Analyticity of the functions in \mathcal{H}

The RKHS \mathcal{H} is a space of analytic functions in Ω

- $\Leftrightarrow K: \Omega \longrightarrow \mathbb{H}$ is analytic in Ω
- \Leftrightarrow $\{S_n\}_{n=1}^{\infty}$ are analytic in Ω and $||K(\cdot)||$ is locally bounded,

where

•
$$K(z) = \sum_{n=1}^{\infty} \langle K(z), x_n \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} S_n(z) x_n$$
,
• $\{x_n\}_{n=1}^{\infty}$ is an orthonormal basis (Riesz basis or frame) in \mathbb{H} .

• Let $\{x_n\}_{n=1}^{\infty}$ be an orthonormal basis for \mathbb{H} . Expanding K(z) with respect to $\{x_n\}_{n=1}^{\infty}$

$$K(z) = \sum_{n=1}^{\infty} \langle K(z), x_n \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} S_n(z) x_n.$$

• Let $\{x_n\}_{n=1}^{\infty}$ be an orthonormal basis for \mathbb{H} . Expanding K(z) with respect to $\{x_n\}_{n=1}^{\infty}$

$$K(z) = \sum_{n=1}^{\infty} \langle K(z), x_n \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} S_n(z) x_n.$$

Assume there exists $\{z_n\}_{n=1}^{\infty}\subset\Omega=\mathbb{C}$ such that $S_n(z_m)=a_n\,\delta_{n,m}$ $(a_n\neq0)$

$$K(z) = \sum_{n=1}^{\infty} S_n(z) x_n; \quad S_n(z_m) = a_n \delta_{n,m} (a_n \neq 0)$$

Sampling theorem

Then, for all $f \in \mathcal{H}$

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C}.$$

Convergence of the series is absolute, and uniform in subsets of \mathbb{C} where $\|K(z)\|_{\mathbb{H}}$ is bounded.

Suppose the orthonormal basis for $\ensuremath{\mathbb{H}}$ partitioned as

$$\{x_n\}_{n=1}^{\infty} \cup \{y_n\}_{n=1}^{\infty}.$$

Now,

$$K(z) = \sum_{n=1}^{\infty} \left[S_n(z) x_n + T_n(z) y_n \right],$$

Suppose the orthonormal basis for ${\mathbb H}$ partitioned as

$$\{x_n\}_{n=1}^{\infty} \cup \{y_n\}_{n=1}^{\infty}.$$

Now,

$$K(z) = \sum_{n=1}^{\infty} \left[S_n(z) x_n + T_n(z) y_n \right],$$

then

$$K'(z) = \sum_{n=1}^{\infty} \left[S'_n(z) x_n + T'_n(z) y_n \right].$$

$$K(z) = \sum_{n=1}^{\infty} \left[S_n(z) x_n + T_n(z) y_n \right],$$

$$K'(z) = \sum_{n=1}^{\infty} \left[S'_n(z) x_n + T'_n(z) y_n \right].$$

Assume there exists $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that

- $S_n(z_m) = a_n \delta_{n,m}$; $T_n(z_m) = b_n \delta_{n,m}$,
- $S'_n(z_m) = c_n \delta_{n,m}$; $T'_n(z_m) = d_n \delta_{n,m}$, and
- $\Delta_n = a_n d_n b_n c_n \neq 0$ for all $n \in \mathbb{N}$.

•
$$K(z) = \sum_{n=1}^{\infty} \left[S_n(z) x_n + T_n(z) y_n \right],$$

- $S_n(z_m) = a_n \delta_{n,m}$; $T_n(z_m) = b_n \delta_{n,m}$,
- $S'_n(z_m) = c_n \delta_{n,m}$; $T'_n(z_m) = d_n \delta_{n,m}$, and
- $\Delta_n = a_n d_n b_n c_n \neq 0$ for all $n \in \mathbb{N}$.

Sampling theorem

Then, for all $f \in \mathcal{H}$

$$f(z) = \sum_{n=1}^{\infty} \left[f(z_n) \frac{d_n S_n(z) - c_n T_n(z)}{\Delta_n} + f'(z_n) \frac{a_n T_n(z) - b_n S_n(z)}{\Delta_n} \right].$$

Convergence of the series is absolute, and uniform in subsets of \mathbb{C} where $\|K(z)\|_{\mathbb{H}}$ is bounded.

$$\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \mathbb{H} \longrightarrow \mathbb{H}$$

- ullet $\mathcal A$ is a symmetric operator, densely defined on $\mathbb H$:
- Exists $\mathcal{T} = \mathcal{A}^{-1}$,
- The resolvent operator $R_z = (zI A)^{-1}$ is a compact operator.

$$A: D(A) \subset \mathbb{H} \longrightarrow \mathbb{H}; \quad R_z = (zI - A)^{-1}.$$

For any $x \in \mathbb{H}$ we have

$$R_z(x) = \sum_{n=1}^{\infty} \left(\frac{1}{z - z_n} \sum_{i=1}^{k_n} \langle x, e_{n,i} \rangle_{\mathbb{H}} e_{n,i} \right)$$

$$A: D(A) \subset \mathbb{H} \longrightarrow \mathbb{H}; \quad R_z = (zI - A)^{-1}.$$

For any $x \in \mathbb{H}$ we have

$$R_{z}(x) = \sum_{n=1}^{\infty} \left(\frac{1}{z - \frac{z_{n}}{z_{n}}} \sum_{i=1}^{k_{n}} \langle x, e_{n,i} \rangle_{\mathbb{H}} e_{n,i} \right)$$

- $\{z_n\}_{n=1}^{\infty}$ are the eigenvalues of A.
- $\{\{e_{n,i}\}_{i=1}^{k_n}\}_{n=1}^{\infty}$, are the associated orthonormal basis of eigenvectors of \mathcal{A} .

$$A: D(A) \subset \mathbb{H} \longrightarrow \mathbb{H}; \quad R_z = (zI - A)^{-1}.$$

For any $x \in \mathbb{H}$ we have

$$R_z(x) = \sum_{n=1}^{\infty} \left(\frac{1}{z - z_n} \sum_{i=1}^{k_n} \langle x, \mathbf{e}_{n,i} \rangle_{\mathbb{H}} \mathbf{e}_{n,i} \right)$$

- $\{z_n\}_{n=1}^{\infty}$ are the eigenvalues of A.
- $\{\{e_{n,i}\}_{i=1}^{k_n}\}_{n=1}^{\infty}$, are the associated orthonormal basis of eigenvectors of \mathcal{A} .

•
$$R_z(x) = \sum_{n=1}^{\infty} \left(\frac{1}{z - z_n} \sum_{i=1}^{k_n} \langle x, e_{n,i} \rangle_{\mathbb{H}} e_{n,i} \right)$$

Definition

For a fixed $a \in \mathbb{H}$ define

$$K_a: \mathbb{C} \longrightarrow \mathbb{H}$$
 $z \longrightarrow K_a(z) := P(z) R_z(a)$

P any entire function having simple zeros at $\{z_n\}_{n=1}^{\infty}$

Sampling result

For $x \in \mathbb{H}$, let f be the function given by $f(z) := \langle K_a(z), x \rangle_{\mathbb{H}}$, $z \in \mathbb{C}$. Then,

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}.$$

Convergence of the series is absolute, and uniform in compact subsets of \mathbb{C} .

Sampling result

Let f be the function given by $f(z) := \langle K_a(z), x \rangle_{\mathbb{H}}$ then

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}.$$

Remarks

• Classical sampling results associated with differential problems are derived from this result. • References

Sampling result

Let f be the function given by $f(z) := \langle K_a(z), x \rangle_{\mathbb{H}}$ then

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}.$$

Remarks

- Classical sampling results associated with differential problems are derived from this result. References
- The corresponding \mathcal{H}_a space is a *de Branges space* of entire functions. de Branges space

Sampling associate with Indeterminate moment problem

• $s = \{s_n\}_{n=0}^{\infty}$ indeterminate Hamburger moment sequence

$$V_s = \left\{ \mu \geq 0 \; \mathsf{Borel} \; \mid \int_{-\infty}^{\infty} x^n \; d\mu(x) = s_n \,, n \geq 0 \right\}$$

- $\{P_n(x)\}_{n=0}^{\infty}$ orthonormal polynomials (with positive leading coefficient) with respect to any $\mu \in V_s$
- $\{Q_n(x)\}_{n=0}^{\infty}$ second kind orthogonal polynomials associated with $\{P_n(x)\}_{n=0}^{\infty}$.

Sampling associate with Indeterminate moment problem

• $s = \{s_n\}_{n=0}^{\infty}$ indeterminate Hamburger moment sequence

$$V_s = \left\{ \mu \geq 0 \; \mathsf{Borel} \; \mid \int_{-\infty}^{\infty} x^n \; d\mu(x) = s_n \,, n \geq 0 \right\}$$

- $\{P_n(x)\}_{n=0}^{\infty}$ orthonormal polynomials (with positive leading coefficient) with respect to any $\mu \in V_s$
- $\{Q_n(x)\}_{n=0}^{\infty}$ second kind orthogonal polynomials associated with $\{P_n(x)\}_{n=0}^{\infty}$.

Differential problems and Sampling

W. N. Everitt and G. Nasri-Roudsari. Sturm-Liouville problems with coupled boundary conditions and Lagrange interpolation series.

J. Comp. Anal. Appl., 1(4):319–347, 1999.

Rendiconti di Matematica, 14:87-126, 1994.

W. N. Everitt, G. Schöttler, and P. L. Butzer. Sturm-Liouville boundary value problems and Lagrange interpolation series.

A. I. Zayed.

On Kramer sampling theorem associated with general Sturm-Liouville problems and Lagrange interpolation. *SIAM J. Appl. Math.*, 51:575–604, 1991.

Differential problems and Sampling

A. I. Zayed, M. A. El-Sayed, and M. H. Annaby.
On Lagrange interpolation and Kramer's sampling theorem associated with self-adjoint boundary-value problems.

J. Math. Anal. Appl., 158:269–284, 1991.

A. I. Zayed, G. Hinsen, and P. L. Butzer. On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm-Liouville problems. *SIAM J. Appl. Math.*, 50:893–909, 1990.

Definition

An operator J defined on a Hilbert space $\mathbb H$ is a conjugation operator if, for all $x,y\in\mathbb H$,

$$\langle Jx, Jy \rangle_{\mathbb{H}} = \langle y, x \rangle_{\mathbb{H}}$$
, and $J^2x = x$.

Assume that the operator \mathcal{A} is real with respect to J, i.e., the relationship $J\mathcal{A}J=\mathcal{A}$ is satisfied.

Return

Definition

An operator J defined on a Hilbert space \mathbb{H} is a conjugation operator if, for all $x, y \in \mathbb{H}$,

$$\langle Jx, Jy \rangle_{\mathbb{H}} = \langle y, x \rangle_{\mathbb{H}}$$
, and $J^2x = x$.

Assume that the operator A is real with respect to J, i.e., the relationship JAJ = A is satisfied.

The following properties, which will be used later, hold:

- The sequence $\{(Je_{n,i})_{i=1}^{k_n}\}_{n=1}^{\infty}$ is also an orthonormal basis of eigenfunctions in \mathbb{H} .

Definition

An operator J defined on a Hilbert space \mathbb{H} is a conjugation operator if, for all $x, y \in \mathbb{H}$,

$$\langle Jx, Jy \rangle_{\mathbb{H}} = \langle y, x \rangle_{\mathbb{H}}$$
, and $J^2x = x$.

Assume that the operator \mathcal{A} is real with respect to J, i.e., the relationship $J\mathcal{A}J=\mathcal{A}$ is satisfied.

The following properties, which will be used later, hold:

- The sequence $\{(Je_{n,i})_{i=1}^{k_n}\}_{n=1}^{\infty}$ is also an orthonormal basis of eigenfunctions in \mathbb{H} .
- ② Since $\overline{P(\overline{z})} = P(z)$ for $z \in \mathbb{C}$, we have that $JK_a(\overline{z}) = K_{Ja}(z)$ for each $z \in \rho(A)$.

Definition

An operator J defined on a Hilbert space \mathbb{H} is a conjugation operator if, for all $x, y \in \mathbb{H}$,

$$\langle Jx, Jy \rangle_{\mathbb{H}} = \langle y, x \rangle_{\mathbb{H}}$$
, and $J^2x = x$.

Assume that the operator \mathcal{A} is real with respect to J, i.e., the relationship $J\mathcal{A}J=\mathcal{A}$ is satisfied.

The following properties, which will be used later, hold:

- The sequence $\{(Je_{n,i})_{i=1}^{k_n}\}_{n=1}^{\infty}$ is also an orthonormal basis of eigenfunctions in \mathbb{H} .
- ② Since $\overline{P(\overline{z})} = P(z)$ for $z \in \mathbb{C}$, we have that $JK_a(\overline{z}) = K_{Ja}(z)$ for each $z \in \rho(A)$.

Definition

A Hilbert space ${\cal H}$ of entire functions is a de Branges space if the following conditions hold:

B1. Whenever $f \in \mathcal{H}$ and ω is a nonreal zero of f, the function

$$g(z) := f(z) \frac{z - \overline{\omega}}{z - \omega}$$

belongs to \mathcal{H} and $\|g\| = \|f\|$.

- B2. For each $\omega \notin \mathbb{R}$ the linear mapping $\mathcal{H} \ni f \to f(\omega)$ is continuous.
- B3. The function $f^*(z) := \overline{f(\overline{z})}$ belongs to the space, and $||f^*|| = ||f||$.