Analytical Sampling, Lagrange-Type Interpolation Series and de Branges Spaces

Paulo E. Fernández Moncada

(joint work with A. G. García and M. A. Hernández-Medina.)

UC3M - Departamento de Matemáticas-Mayo 18, 2011

Outline

- 2 The Hilbert space \mathcal{H}_K .
- 3 Sampling in \mathcal{H}_K .
- 4 Lagrange-type interpolation series in \mathcal{H}_K .
- **5** The space \mathcal{H}_K as de Branges space.

・ロト・日本・ キャー ほう うくの

Motivation

 $\begin{array}{l} \text{The Hilbert space } \mathcal{H}_{K}\,.\\ \text{Sampling in } \mathcal{H}_{K}\,.\\ \text{Lagrange-type interpolation series in } \mathcal{H}_{K}\,.\\ \text{The space } \mathcal{H}_{K}\,\text{ as de Branges space}. \end{array}$

Outline

- 2 The Hilbert space \mathcal{H}_K .
- 3 Sampling in \mathcal{H}_K .
- 4 Lagrange-type interpolation series in \mathcal{H}_K .
- 5 The space \mathcal{H}_K as de Branges space.

・ロト・西・・日・・日・ つんの

Whittaker-Shannon-Kotelnikov sampling theorem

We consider the classical Whittaker-Shannon-Kotelnikov sampling theorem in the Paley-Wiener spaces

$$PW_{\pi} = \left\{ f \in L^2(\mathbb{R}) \cap C(\mathbb{R}), \text{ supp } \widehat{f} \subseteq [-\pi, \pi] \right\}$$

where \widehat{f} stands for the Fourier transform. Any function f in PW_{π} can be written as

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \widehat{f}(x) e^{izx} dx$$
$$= \left\langle \frac{e^{izt}}{\sqrt{2\pi}}, \overline{\widehat{f}} \right\rangle_{L^{2}[-\pi,\pi]}$$

with $\widehat{f}\in L^2[-\pi,\pi]$ and the Fourier kernel (denoted K) is given by

$$\begin{array}{rcccc} K & : & \mathbb{C} & \to & L^2[-\pi,\pi] \\ & z & \to & K(z) \end{array}, \quad [K(z)](x) = \frac{e^{izx}}{\sqrt{2\pi}} \end{array}$$

▲ロト▲圖ト▲酒ト▲酒ト 酒 のへで

Motivation

 $\begin{array}{l} \text{The Hilbert space } \mathcal{H}_{K}\,.\\ \text{Sampling in } \mathcal{H}_{K}\,.\\ \text{Lagrange-type interpolation series in } \mathcal{H}_{K}\,.\\ \text{The space } \mathcal{H}_{K} \text{ as de Branges space}. \end{array}$

Whittaker-Shannon-Kotelnikov sampling theorem

Whittaker-Shannon-Kotelnikov sampling theorem.

Any function f in the Paley-Wiener space PW_{π} can be recovered from its samples $\{f(n)\}_{n\in\mathbb{Z}}$ as the cardinal series

$$f(z) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin \pi(z-n)}{\pi(z-n)}$$

where the convergence in the series is absolute and uniform on horizontal strips of \mathbb{C} since $\|K(z)\|_{L^2[-\pi,\pi]} \leq e^{\pi|y|}$ for all $z = x + iy \in \mathbb{C}$.

 $\begin{array}{c} \text{Motivation} \\ \textbf{The Hilbert space \mathcal{H}_K} \\ & \text{Sampling in \mathcal{H}_K} \\ \text{Lagrange-type interpolation series in \mathcal{H}_K} \\ \text{Lagrange-type interpolation series in \mathcal{H}_K} \\ \text{The space \mathcal{H}_K} \text{ as de Branges space.} \end{array}$

Outline

- 2 The Hilbert space \mathcal{H}_K .
 - 3 Sampling in \mathcal{H}_K .
- 4 Lagrange-type interpolation series in \mathcal{H}_K .
- 5 The space \mathcal{H}_K as de Branges space.

・ロト・日本・日本・日本・日本・日本

The Hilbert space \mathcal{H}_K .

Given a complex, separable Hilbert space ${\mathbb H}$ and an kernel

$$\begin{array}{cccc} K & : & \mathbb{C} & \longrightarrow & \mathbb{H} \\ & z & \mapsto & K(z) \end{array}$$

we define a mapping between \mathbb{H} and the set $\mathcal{F}(\mathbb{C},\mathbb{C}) := \{f : \mathbb{C} \longrightarrow \mathbb{C}\}$ as follows:

$$\begin{array}{rccccc} \mathcal{T}_K & : & \mathbb{H} & \longrightarrow & \mathcal{F}(\mathbb{C},\mathbb{C}) \\ & & x & \longrightarrow & f_x \end{array}$$

such that

$$f_x(z) = \langle K(z), x \rangle_{\mathbb{H}} \quad z \in \mathbb{C}.$$

and denote by \mathcal{H}_K the linear space of all functions $f_x(z)$ in the range space of \mathcal{T}_K ; i.e.,

$$\mathcal{T}_{K}(\mathbb{H}) = \mathcal{H}_{K} = \Big\{ f \, : \, \mathbb{C} \longrightarrow \mathbb{C} : \, f(z) = \langle K(z), x \rangle_{\mathbb{H}} \,, \, x \in \mathbb{H} \Big\}.$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Some properties of \mathcal{H}_K .

• The space \mathcal{H}_K endowed with the norm

$$\|f\|_{\mathcal{H}_{K}} := \inf \left\{ \|x\|_{\mathbb{H}} : f = \mathcal{T}_{K}x \right\}.$$

becomes a Hilbert Space.

• The mapping \mathcal{T}_K is a bijective isometry from \mathbb{H} to \mathcal{H}_K if and only if $\{K(z): z \in \mathbb{C}\}$ is complete in \mathbb{H} or equivalently if and only if \mathcal{T}_K is injective.

In particular, if there exist $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} such that $\{K(z_n)\}_{n=1}^{\infty}$ is a basis in \mathbb{H} , then \mathcal{T}_K is an antilinear isometry from \mathbb{H} onto \mathcal{H}_K .

Some properties of \mathcal{H}_K .

• \mathcal{H}_K is an Hilbert space of reproducing kernel (RKHS in short); i.e., the evaluation functionals

are bounded. For fixed $z \in \mathbb{C}$, for any $f \in \mathcal{H}_K$, since $f(z) = \langle K(z), x \rangle_{\mathbb{H}}$ $x \in \mathbb{H}$, using the Cauchy-Schwarz inequality we obtain

$$|f(z)| \le ||K(z)||_{\mathbb{H}} ||x||_{\mathbb{H}} = C_z ||f||_{\mathcal{H}_K}$$

- As a consequence, convergence in the norm $\|\cdot\|_{\mathcal{H}_K}$ implies pointwise convergence which will be uniform on subsets of \mathbb{C} where $\|K(\cdot)\|_{\mathbb{H}}$ is bounded.
- The reproducing kernel of \mathcal{H}_K is

$$\kappa(z,\omega) = \langle K(z), K(\omega) \rangle_{\mathbb{H}}$$

which verifies the reproducing property

 $f(\omega) = \langle f(\cdot), \kappa(\cdot, \omega) \rangle_{\mathcal{H}} \text{ for each } \omega \in \mathbb{C} \text{ and } f \in \mathcal{H}$

Analyticity of the functions in \mathcal{H}_K .

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} .

Characterization of the analyticity of the functions in $\mathcal{H}_{\rm K}$ in terms of Riesz bases.

- A Riesz basis for \mathbb{H} a separable Hilbert space is a sequence of the form $\{Ue_n\}_{n=1}^{\infty}$ where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathbb{H} and $U : \mathbb{H} \to \mathbb{H}$ is a bounded biyective operator.
- If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathbb{H} , there exists a unique sequence $\{x_n^*\}_{n=1}^{\infty}$ in \mathbb{H} such that

$$x = \sum_{n=1}^{\infty} \langle x, x_n^* \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathbb{H}} x_n^*, \quad x \in \mathbb{H}.$$

 ${x_n^*}_{n=1}^\infty$ is also Riesz basis (called the dual Riesz basis of ${x_n}_{n=1}^\infty$) and hese series converges unconditionally for each x in \mathbb{H} .

• $\{x_n\}_{n=1}^{\infty}$ and $\{x_n^*\}_{n=1}^{\infty}$ are biorthogonal bases, i.e., $\langle x_n, x_m^* \rangle_{\mathbb{H}_{\underline{a}}} = \delta_{\eta_{\underline{a}}}$.

Analyticity of the functions in \mathcal{H}_K .

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} .

Characterization of the analyticity of the functions in \mathcal{H}_K in terms of Riesz bases.

- A Riesz basis for \mathbb{H} a separable Hilbert space is a sequence of the form $\{Ue_n\}_{n=1}^{\infty}$ where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathbb{H} and $U : \mathbb{H} \to \mathbb{H}$ is a bounded biyective operator.
- If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathbb{H} , there exists a unique sequence $\{x_n^*\}_{n=1}^{\infty}$ in \mathbb{H} such that

$$x = \sum_{n=1}^{\infty} \langle x, x_n^* \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathbb{H}} x_n^*, \quad x \in \mathbb{H}.$$

 $\{x_n^*\}_{n=1}^\infty$ is also Riesz basis (called the dual Riesz basis of $\{x_n\}_{n=1}^\infty$) and hese series converges unconditionally for each x in \mathbb{H} .

• $\{x_n\}_{n=1}^{\infty}$ and $\{x_n^*\}_{n=1}^{\infty}$ are biorthogonal bases, i.e., $\langle x_n, x_m^* \rangle_{\mathbb{H}_{=}^{\infty}} \stackrel{\sim}{\to} \delta_{n} \stackrel{m}{\to} \frac{1}{\mathbb{H}_{=}^{\infty}} \stackrel{\sim}{\to} \infty$

Analyticity of the functions in \mathcal{H}_K .

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} .

Characterization of the analyticity of the functions in \mathcal{H}_{K} in terms of Riesz bases.

- A Riesz basis for \mathbb{H} a separable Hilbert space is a sequence of the form $\{Ue_n\}_{n=1}^{\infty}$ where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathbb{H} and $U : \mathbb{H} \to \mathbb{H}$ is a bounded biyective operator.
- If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathbb{H} , there exists a unique sequence $\{x_n^*\}_{n=1}^{\infty}$ in \mathbb{H} such that

$$x = \sum_{n=1}^{\infty} \langle x, x_n^* \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathbb{H}} x_n^*, \quad x \in \mathbb{H}.$$

 $\{x_n^*\}_{n=1}^\infty$ is also Riesz basis (called the dual Riesz basis of $\{x_n\}_{n=1}^\infty$) and these series converges unconditionally for each x in \mathbb{H} .

•
$$\{x_n\}_{n=1}^{\infty}$$
 and $\{x_n^*\}_{n=1}^{\infty}$ are biorthogonal bases, i.e., $\langle x_n, x_m^* \rangle_{\mathbb{H}_{=}^{+}} \stackrel{<}{\to} \int_{\mathbb{H}_{=}^{+}} \int_{\mathbb{H}_{=}^{+} \int_{\mathbb{H}_{=}^{+}} \int_{\mathbb{H}_{=}^{+}} \int_{\mathbb{H}_{=}^$

Analyticity of the functions in \mathcal{H}_K .

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} .

Characterization of the analyticity of the functions in \mathcal{H}_{K} in terms of Riesz bases.

- A Riesz basis for \mathbb{H} a separable Hilbert space is a sequence of the form $\{Ue_n\}_{n=1}^{\infty}$ where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathbb{H} and $U: \mathbb{H} \to \mathbb{H}$ is a bounded biyective operator.
- If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathbb{H} , there exists a unique sequence $\{x_n^*\}_{n=1}^{\infty}$ in \mathbb{H} such that

$$x = \sum_{n=1}^{\infty} \langle x, x_n^* \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathbb{H}} x_n^*, \quad x \in \mathbb{H}.$$

 $\{x_n^*\}_{n=1}^\infty$ is also Riesz basis (called the dual Riesz basis of $\{x_n\}_{n=1}^\infty$) and these series converges unconditionally for each x in \mathbb{H} .

• $\{x_n\}_{n=1}^{\infty}$ and $\{x_n^*\}_{n=1}^{\infty}$ are biorthogonal bases, i.e., $\langle x_n, x_m^* \rangle_{\mathbb{H}_{=}^{\pm}} \stackrel{<}{\underset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}}}} \stackrel{>}{\underset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}}}} \stackrel{>}{\underset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}{\overset{\scriptstyle{\leftarrow}}}}}$

Analyticity of the functions in \mathcal{H}_K .

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} .

Characterization of the analyticity of the functions in \mathcal{H}_{K} in terms of Riesz bases.

- A Riesz basis for \mathbb{H} a separable Hilbert space is a sequence of the form $\{Ue_n\}_{n=1}^{\infty}$ where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathbb{H} and $U: \mathbb{H} \to \mathbb{H}$ is a bounded biyective operator.
- If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathbb{H} , there exists a unique sequence $\{x_n^*\}_{n=1}^{\infty}$ in \mathbb{H} such that

$$x = \sum_{n=1}^{\infty} \langle x, x_n^* \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathbb{H}} x_n^*, \quad x \in \mathbb{H}.$$

 $\{x_n^*\}_{n=1}^\infty$ is also Riesz basis (called the dual Riesz basis of $\{x_n\}_{n=1}^\infty$) and these series converges unconditionally for each x in \mathbb{H} .

• $\{x_n\}_{n=1}^{\infty}$ and $\{x_n^*\}_{n=1}^{\infty}$ are biorthogonal bases, i.e., $\{x_n, x_m^*\}_{\mathbb{H}} = \delta_{n_1 m}$.

Analyticity of the functions in \mathcal{H}_K .

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} .

Characterization of the analyticity of the functions in \mathcal{H}_{K} in terms of Riesz bases.

- A Riesz basis for \mathbb{H} a separable Hilbert space is a sequence of the form $\{Ue_n\}_{n=1}^{\infty}$ where $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathbb{H} and $U: \mathbb{H} \to \mathbb{H}$ is a bounded biyective operator.
- If $\{x_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathbb{H} , there exists a unique sequence $\{x_n^*\}_{n=1}^{\infty}$ in \mathbb{H} such that

$$x = \sum_{n=1}^{\infty} \langle x, x_n^* \rangle_{\mathbb{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathbb{H}} x_n^*, \quad x \in \mathbb{H}.$$

 $\{x_n^*\}_{n=1}^\infty$ is also Riesz basis (called the dual Riesz basis of $\{x_n\}_{n=1}^\infty$) and these series converges unconditionally for each x in \mathbb{H} .

•
$$\{x_n\}_{n=1}^{\infty}$$
 and $\{x_n^*\}_{n=1}^{\infty}$ are biorthogonal bases, i.e. $\langle x_n, x_n^* \rangle_{\mathbb{H}} = \delta_{n,m}$.

Analyticity of the functions in \mathcal{H}_K .

Suppose that a Riesz basis $\{x_n\}_{n=1}^{\infty}$ is given and let $\{x_n^*\}_{n=1}^{\infty}$ be its dual Riesz basis. Expanding K(z) for $z \in \mathbb{C}$ fixed with respect to this basis we obtain

$$K(z) = \sum_{n=1}^{\infty} \left\langle K(z), x_n^* \right\rangle_{\mathbb{H}} x_n$$

where the sequence of coefficients

$$S_n(z) := \langle K(z), x_n^* \rangle_{\mathbb{H}}$$

as functions in z are in \mathcal{H}_K . The following result holds

Theorem

 \mathcal{H}_K is a RKHS of entire functions if and only if the functions $\{S_n\}_{n=1}^{\infty}$ are entire and the function $z \mapsto ||K(z)||_{\mathbb{H}}$ is bounded on compact sets of \mathbb{C} .

Outline

- 2 The Hilbert space \mathcal{H}_K .
- 3 Sampling in \mathcal{H}_K .
- 4 Lagrange-type interpolation series in \mathcal{H}_K .
- 5 The space \mathcal{H}_K as de Branges space.

・ロト・日本・日本・日本・日本・日本

Sampling in \mathcal{H}_K .

Definition

An analytic kernel $K : \mathbb{C} \longrightarrow \mathbb{H}$ is said to be an **analytic Kramer kernel** if there are sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} , $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$ and a Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathbb{H} , such that

$$K(z_n) = a_n x_n \quad \forall n \in \mathbb{N},$$

Analytic Kramer sampling theorem.

Let $K : \mathbb{C} \longrightarrow \mathbb{H}$ be an analytic Kramer kernel as in above definition and \mathcal{H}_K its corresponding RKHS of entire functions.

Then, any $f \in \mathcal{H}_K$ can be recovered from its samples $\{f(z_n)\}_{n=1}^{\infty}$ by means of the sampling series

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C}.$$

This series converges absolutely and uniformly on compact subsets of $\mathbb C$

Sampling in \mathcal{H}_K .

Definition

An analytic kernel $K : \mathbb{C} \longrightarrow \mathbb{H}$ is said to be an **analytic Kramer kernel** if there are sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} , $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$ and a Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathbb{H} , such that

$$K(z_n) = a_n x_n \quad \forall n \in \mathbb{N},$$

Analytic Kramer sampling theorem.

Let $K : \mathbb{C} \longrightarrow \mathbb{H}$ be an analytic Kramer kernel as in above definition and \mathcal{H}_K its corresponding RKHS of entire functions.

Then, any $f \in \mathcal{H}_K$ can be recovered from its samples $\{f(z_n)\}_{n=1}^{\infty}$ by means of the sampling series

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C}.$$

This series converges absolutely and uniformly on compact subsets of ${\mathbb C}$

Outline

- 2 The Hilbert space \mathcal{H}_K .
- 3 Sampling in \mathcal{H}_K .
- 4 Lagrange-type interpolation series in \mathcal{H}_K .

イロト イ団ト イヨト イヨト

5 The space \mathcal{H}_K as de Branges space.

Lagrange-type interpolation series

In the Whittaker-Shannon-Kotelnikov sampling formula for each f in the Paley-Wiener space $PW_{\pi},$ and $z\in\mathbb{C},$

$$f(z) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin \pi (z - n)}{\pi (z - n)} = \sum_{n \in \mathbb{Z}} f(n) \frac{G(z)}{(z - n)G'(n)}, \quad \text{where} \quad G(z) = \frac{\sin \pi z}{\pi}$$

Problem

In the Analytic Kramer sampling theorem, a more difficult question concerns whether the sampling expansion

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C},$$

in \mathcal{H}_K (K an analytic Kramer kernel), can be written as a Lagrange-type interpolation series.

A necessary and sufficient condition involves the following algebraic property:

Lagrange-type interpolation series

In the Whittaker-Shannon-Kotelnikov sampling formula for each f in the Paley-Wiener space $PW_{\pi},$ and $z\in\mathbb{C},$

$$f(z) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin \pi (z - n)}{\pi (z - n)} = \sum_{n \in \mathbb{Z}} f(n) \frac{G(z)}{(z - n)G'(n)}, \quad \text{where} \quad G(z) = \frac{\sin \pi z}{\pi}$$

Problem

In the Analytic Kramer sampling theorem, a more difficult question concerns whether the sampling expansion

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C},$$

in \mathcal{H}_{K} (K an analytic Kramer kernel), can be written as a Lagrange-type interpolation series.

A necessary and sufficient condition involves the following algebraic property:

Lagrange-type interpolation series

In the Whittaker-Shannon-Kotelnikov sampling formula for each f in the Paley-Wiener space $PW_{\pi},$ and $z\in\mathbb{C},$

$$f(z) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin \pi (z - n)}{\pi (z - n)} = \sum_{n \in \mathbb{Z}} f(n) \frac{G(z)}{(z - n)G'(n)}, \quad \text{where} \quad G(z) = \frac{\sin \pi z}{\pi}$$

Problem

In the Analytic Kramer sampling theorem, a more difficult question concerns whether the sampling expansion

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C},$$

in \mathcal{H}_{K} (K an analytic Kramer kernel), can be written as a Lagrange-type interpolation series.

A necessary and sufficient condition involves the following algebraic property:

 $\begin{array}{c} \text{Motivation}\\ \text{The Hilbert space } \mathcal{H}_{K}.\\ \text{Sampling in } \mathcal{H}_{K}.\\ \text{Lagrange-type interpolation series in } \mathcal{H}_{K}.\\ \text{The space } \mathcal{H}_{K} \text{ as de Branqes space.} \end{array}$

Lagrange-type interpolation series

Definition (Zero removing property)

A space \mathcal{H} of entire functions has the zero-removing property (ZR in short) if for any $g \in \mathcal{H}$ and any zero ω of g the function $\frac{g(z)}{z-\omega}$ belongs to \mathcal{H} .

Theorem (Lagrange-type interpolation series)

Let \mathcal{H}_K be a RKHS of entire functions obtained from an analytic Kramer kernel K with respect to the sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C}\setminus\{0\}$, i.e., for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathbb{H} , $K(z_n) = a_n x_n$, $n \in \mathbb{N}$.

Then, the sampling formula $f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), z \in \mathbb{C}$, for \mathcal{H}_K can be written as a Lagrange-type interpolation series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{Q(z)}{Q'(z_n)(z - z_n)}.$$

where Q denotes an entire function having only simple zeros at $\{z_n\}_{n=1}^{\infty}$, if and only if the space \mathcal{H}_K satisfies the ZR property.

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The Hilbert space \mathcal{H}_K}.\\ \mbox{Sampling in \mathcal{H}_K}.\\ \mbox{Lagrange-type interpolation series in \mathcal{H}_K}.\\ \mbox{Lagrange-type activation \mathcal{H}_K}.\\ \mbox{The space \mathcal{H}_K} as de Branges space. \end{array}$

Lagrange-type interpolation series

Definition (Zero removing property)

A space \mathcal{H} of entire functions has the zero-removing property (ZR in short) if for any $g \in \mathcal{H}$ and any zero ω of g the function $\frac{g(z)}{z-\omega}$ belongs to \mathcal{H} .

Theorem (Lagrange-type interpolation series)

Let \mathcal{H}_K be a RKHS of entire functions obtained from an analytic Kramer kernel K with respect to the sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$, i.e., for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathbb{H} , $K(z_n) = a_n x_n$, $n \in \mathbb{N}$.

Then, the sampling formula $f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), z \in \mathbb{C}$, for \mathcal{H}_K can be written as a Lagrange-type interpolation series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{Q(z)}{Q'(z_n)(z - z_n)}.$$

where Q denotes an entire function having only simple zeros at $\{z_n\}_{n=1}^{\infty}$, if and only if the space \mathcal{H}_K satisfies the ZR property.

Lagrange-type interpolation series. (Examples)

Note: The entire function Q is such that $(z - z_n)S_n(z) = \sigma_n Q(z)$ for some nonzero constants σ_n $n \in \mathbb{N}$

Example 1. (The entire functions in the Pólya class.)

The entire function F(z) is said to be of Pólya class if:

- It has no zeros in the upper half-plane.
- $\bullet \ |F(x-iy)| \leq |F(x+iy)|\,, \quad \text{for } y>0.$
- |F(x+iy)| is a nondecreasing function of y > 0, for each fixed x.

Example 2. (The Paley-Wiener class.)

The Paley-Wiener class PW_{π} :

$$PW_{\pi} = \left\{ f \in L^{2}(\mathbb{R}) \cap C(\mathbb{R}), \text{ supp } \widehat{f} \subseteq [-\pi, \pi] \right\}$$

satisfy the ZR property. Using the classical Paley-Wiener theorem, the space PW_{π} also is expressable as

$$PW_{\pi} = \left\{ f \text{ entire function} : |f(z)| \le Ae^{\pi |z|}, \quad f \mid_{\mathbb{R}} \in L^{2}(\mathbb{R}) \right\}$$

From this characterization the ZR property inmediately comes out, and a source of the second second

Lagrange-type interpolation series. (Examples)

Note: The entire function Q is such that $(z - z_n)S_n(z) = \sigma_n Q(z)$ for some nonzero constants $\sigma_n \ n \in \mathbb{N}$

Example 1. (The entire functions in the Pólya class.)

The entire function F(z) is said to be of Pólya class if:

- It has no zeros in the upper half-plane.
- $|F(x iy)| \le |F(x + iy)|$, for y > 0.
- |F(x+iy)| is a nondecreasing function of y > 0, for each fixed x.

Example 2. (The Paley-Wiener class.)

The Paley-Wiener class PW_{π} :

$$PW_{\pi} = \left\{ f \in L^{2}(\mathbb{R}) \cap C(\mathbb{R}), \text{ supp } \widehat{f} \subseteq [-\pi, \pi] \right\}$$

satisfy the ZR property. Using the classical Paley-Wiener theorem, the space PW_{π} also is expressable as

$$PW_{\pi} = \left\{ f \text{ entire function} : |f(z)| \le Ae^{\pi |z|}, \quad f \mid_{\mathbb{R}} \in L^{2}(\mathbb{R}) \right\}$$

From this characterization the ZR property inmediately comes out, and a source of the second second

Lagrange-type interpolation series. (Examples)

Note: The entire function Q is such that $(z - z_n)S_n(z) = \sigma_n Q(z)$ for some nonzero constants $\sigma_n \ n \in \mathbb{N}$

Example 1. (The entire functions in the Pólya class.)

The entire function F(z) is said to be of Pólya class if:

- It has no zeros in the upper half-plane.
- $\bullet \ |F(x-iy)| \leq |F(x+iy)|\,, \quad \text{for } y>0.$
- |F(x + iy)| is a nondecreasing function of y > 0, for each fixed x.

Example 2. (The Paley-Wiener class.)

The Paley-Wiener class PW_{π} :

$$PW_{\pi} = \left\{ f \in L^2(\mathbb{R}) \cap C(\mathbb{R}), \text{ supp } \widehat{f} \subseteq [-\pi, \pi] \right\}$$

satisfy the ZR property. Using the classical Paley-Wiener theorem, the space PW_{π} also is expressable as

$$PW_{\pi} = \left\{ f \text{ entire function}: |f(z)| \le A e^{\pi |z|}, \quad f \mid_{\mathbb{R}} \in L^{2}(\mathbb{R}) \right\}$$

From this characterization the ZR property inmediately comes out.

Lagrange-type interpolation series. (Examples)

Example 3.

Let $K : \mathbb{C} \longrightarrow \mathbb{H}$ be an analytic kernel such that $K(z_0) = 0$ for some $z_0 \in \mathbb{C}$. Then all the functions in the associated space \mathcal{H}_K have a zero at z_0 and the ZR property does not hold in \mathcal{H}_K . Let *f* be a nonzero entire function in \mathcal{H}_K and let *r* denote the order of its zero z_0 . The function

$$\frac{f(z)}{(z-z_0)^r}$$

is not in \mathcal{H}_K .

Example 4. Consider $\mathbb{H} = L^2[-\pi, \pi]$ and $K : \mathbb{C} \longrightarrow L^2[-\pi, \pi]$ be the analytic Kramer kernel defined by:

$$K(z)](t) := \frac{e^{iz^2t}}{\sqrt{2\pi}}$$

Its Taylor series around z = 0 is given by:

$$[K(z)](t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} z^{2n}$$

< ロ > < 同 > < 回 > < 回 >

Lagrange-type interpolation series. (Examples)

Example 3.

Let $K : \mathbb{C} \longrightarrow \mathbb{H}$ be an analytic kernel such that $K(z_0) = 0$ for some $z_0 \in \mathbb{C}$. Then all the functions in the associated space \mathcal{H}_K have a zero at z_0 and the ZR property does not hold in \mathcal{H}_K . Let *f* be a nonzero entire function in \mathcal{H}_K and let *r* denote the order of its zero z_0 . The function

$$\frac{f(z)}{(z-z_0)^r}$$

is not in \mathcal{H}_K .

Example 4. Consider $\mathbb{H} = L^2[-\pi, \pi]$ and $K : \mathbb{C} \longrightarrow L^2[-\pi, \pi]$ be the analytic Kramer kernel defined by:

$$K(z)](t) := \frac{e^{iz^2t}}{\sqrt{2\pi}}$$

Its Taylor series around z = 0 is given by:

$$[K(z)](t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} z^{2n}$$

Lagrange-type interpolation series. (Examples)

The Taylor series for any function $f(z) = \langle K(z), F \rangle_{L^2[-\pi,\pi]}$ in \mathcal{H}_K where $F \in L^2[-\pi,\pi]$ is of the form

$$f(z) = \sum_{n=0}^{\infty} \frac{\langle (it)^n, F \rangle}{n!} z^{2n}, \quad z \in \mathbb{C}.$$

f is an even function.

However, there is a function $g \in L^2[-\pi,\pi]$ such that g(0) = 0. Therefore,

$$\frac{g(z)}{z} = \sum_{n=0}^{\infty} \frac{\langle (it)^n, G \rangle}{n!} z^{2n-1}$$

and clearly, $\frac{g(z)}{z} \notin \mathcal{H}_K$ does not belong to \mathcal{H}_K .

Outline

- 2 The Hilbert space \mathcal{H}_K .
- 3 Sampling in \mathcal{H}_K .
- 4 Lagrange-type interpolation series in \mathcal{H}_K .
- 5 The space \mathcal{H}_K as de Branges space.

・ロト・西・・日・・日・ つんの

The space \mathcal{H}_K as de Branges space

The Paley-Wiener spaces can be seen as special cases of a more general class of Hilbert spaces of entire functions: **The de Branges spaces**:

Definition

Let E be an entire function verifiying $|E(\overline{z})| < |E(z)|$, $|\operatorname{Im}(z) > 0$. The de Branges space $\mathcal{H}(E)$ is the set of all entire functions f such that

$$\left\|f\right\|_{\mathcal{H}(E)}^{2} = \int_{-\infty}^{+\infty} \left|\frac{f(x)}{E(x)}\right|^{2} dx < \infty$$

- *h*(*z*) is of **bounded type** if it can be written as a quotient of two bounded analytic functions in \mathbb{C}^+ .
- h(z) is of **nonpositive mean type** if it grows no fasther than $e^{\epsilon y}$ for each $\epsilon > 0$ on the possitive imaginary axis $\{iy : y > 0\}$

The space \mathcal{H}_K as de Branges space

The Paley-Wiener spaces can be seen as special cases of a more general class of Hilbert spaces of entire functions: **The de Branges spaces**:

Definition

Let E be an entire function verifiying $|E(\overline{z})|<|E(z)|\,,\;\; \operatorname{Im}(z)>0.$ The de Branges space $\mathcal{H}(E)$ is the set of all entire functions f such that

$$\left\|f\right\|_{\mathcal{H}(E)}^{2} = \int_{-\infty}^{+\infty} \left|\frac{f(x)}{E(x)}\right|^{2} dx < \infty$$

- h(z) is of bounded type if it can be written as a quotient of two bounded analytic functions in C⁺.
- h(z) is of **nonpositive mean type** if it grows no fasther than $e^{\epsilon y}$ for each $\epsilon > 0$ on the possitive imaginary axis $\{iy : y > 0\}$

The space \mathcal{H}_K as de Branges space

The Paley-Wiener spaces can be seen as special cases of a more general class of Hilbert spaces of entire functions: **The de Branges spaces**:

Definition

Let E be an entire function verifiying $|E(\overline{z})|<|E(z)|\,,\;\; \operatorname{Im}(z)>0.$ The de Branges space $\mathcal{H}(E)$ is the set of all entire functions f such that

$$\left\|f\right\|_{\mathcal{H}(E)}^{2} = \int_{-\infty}^{+\infty} \left|\frac{f(x)}{E(x)}\right|^{2} dx < \infty$$

- *h*(*z*) is of **bounded type** if it can be written as a quotient of two bounded analytic functions in \mathbb{C}^+ .
- h(z) is of **nonpositive mean type** if it grows no fasther than $e^{\epsilon y}$ for each $\epsilon > 0$ on the possitive imaginary axis $\{iy : y > 0\}$

The space \mathcal{H}_K as de Branges space

The Paley-Wiener spaces can be seen as special cases of a more general class of Hilbert spaces of entire functions: **The de Branges spaces**:

Definition

Let E be an entire function verifiying $|E(\overline{z})| < |E(z)|\,,\;\; \operatorname{Im}(z) > 0.$ The de Branges space $\mathcal{H}(E)$ is the set of all entire functions f such that

$$\left\|f\right\|_{\mathcal{H}(E)}^{2} = \int_{-\infty}^{+\infty} \left|\frac{f(x)}{E(x)}\right|^{2} dx < \infty$$

- *h*(*z*) is of **bounded type** if it can be written as a quotient of two bounded analytic functions in \mathbb{C}^+ .
- h(z) is of **nonpositive mean type** if it grows no fasther than $e^{\epsilon y}$ for each $\epsilon > 0$ on the possitive imaginary axis $\{iy : y > 0\}$

Some properties of the de Branges spaces

• Any de Branges function *E* can be written as E(z) = A(z) - iB(z) where *A* and *B* are entire functions which are real when *z* is real, given by

$$A(z) = \frac{1}{2}(E(z) + \overline{E(\overline{z})}), \quad B(z) = \frac{i}{2}(E(z) - \overline{E(\overline{z})})$$

and the functions $A(\boldsymbol{z})$ and $B(\boldsymbol{z})$ have only real zeros and these zeros interlace.

• $\mathcal{H}(E)$ is a RKHS. The reproducing kernel is

$$\kappa(\omega,z):=\frac{\overline{A(\omega)}B(z)-A(z)\overline{B(\omega)}}{\pi(z-\overline{\omega})}, \ z,\omega\in\mathbb{C}$$

This kernel has the property that for each $f(z) \in \mathcal{H}(E)$, there holds

$$f(\omega) = \langle f(\cdot), \kappa(\omega, \cdot) \rangle_{\mathcal{H}(E)} \qquad \text{for all } \omega \in \mathbb{C}$$

 If E is a strict de Branges function, then de Branges space H(E) satisfies the ZR property.

Sampling in $\mathcal{H}(E)$

The existence of orthogonal sequences in $\mathcal{H}(E)$ is conditioned by so-called phase functions, which implies a sampling formula in this space.

Definition

The continuos function $\varphi(x)$ of real x is said be a phase function associated with E(z) if $E(x)e^{i\varphi(x)}$ is real-valued for all $x \in \mathbb{R}$.

If α is a given real number such that the function $e^{i\alpha}E(z) - e^{-i\alpha}\overline{E(\overline{z})}$ does not belong to $\mathcal{H}(E)$, then the sequence of real numbers $\{t_n\}$ satisfying $\varphi(t_n) = \alpha \mod \pi$ gives an orthogonal basis $\{\kappa(t_n, \cdot)\}$ for $\mathcal{H}(E)$.

Consequently, the following result holds:

Sampling in $\mathcal{H}(E)$

The existence of orthogonal sequences in $\mathcal{H}(E)$ is conditioned by so-called phase functions, which implies a sampling formula in this space.

Definition

The continuos function $\varphi(x)$ of real x is said be a phase function associated with E(z) if $E(x)e^{i\varphi(x)}$ is real-valued for all $x \in \mathbb{R}$.

If α is a given real number such that the function $e^{i\alpha}E(z) - e^{-i\alpha}\overline{E(\overline{z})}$ does not belong to $\mathcal{H}(E)$, then the sequence of real numbers $\{t_n\}$ satisfying $\varphi(t_n) = \alpha \mod \pi$ gives an orthogonal basis $\{\kappa(t_n, \cdot)\}$ for $\mathcal{H}(E)$.

Consequently, the following result holds:

 $\begin{array}{c} \text{Motivation}\\ \text{The Hilbert space } \mathcal{H}_K.\\ \text{Sampling in } \mathcal{H}_K.\\ \text{Lagrange-type interpolation series in } \mathcal{H}_K.\\ \text{The space } \mathcal{H}_K \text{ as de Branqes space.} \end{array}$

Sampling in $\mathcal{H}(E)$ (Theorem and Example)

Theorem.

Let $\mathcal{H}(E)$ be de Branges space, $\{t_n\}$ a sequence of real numbers and $\{\kappa(t_n, \cdot)\}$ an orthogonal basis in $\mathcal{H}(E)$. Then, any function $f \in \mathcal{H}(E)$ can be recovered from its samples $\{f(t_n)\}$ through the sampling formula

$$f(z) = \sum_{n \in \mathbb{N}} f(t_n) \frac{\kappa(t_n, z)}{\kappa(t_n, t_n)} = \sum_{n \in \mathbb{N}} f(t_n) \frac{Q(z)}{(z - t_n)Q'(t_n)}, \quad z \in \mathbb{C}$$

Where Q is an entire function having only simple zeros at $\{t_n\}$. This series converges absolutely and uniformly on compact subsets of \mathbb{C} .

Note: The entire function Q is such that $(z - t_n)\kappa(t_n, z) = \sigma_n Q(z)$ for some nonzero constants σ_n $n \in \mathbb{N}$.

 $\begin{array}{c} \text{Motivation}\\ \text{The Hilbert space } \mathcal{H}_K.\\ \text{Sampling in } \mathcal{H}_K.\\ \text{Lagrange-type interpolation series in } \mathcal{H}_K.\\ \text{The space } \mathcal{H}_K \text{ as de Branqes space.} \end{array}$

Sampling in $\mathcal{H}(E)$ (Theorem and Example)

Theorem.

Let $\mathcal{H}(E)$ be de Branges space, $\{t_n\}$ a sequence of real numbers and $\{\kappa(t_n, \cdot)\}$ an orthogonal basis in $\mathcal{H}(E)$. Then, any function $f \in \mathcal{H}(E)$ can be recovered from its samples $\{f(t_n)\}$ through the sampling formula

$$f(z) = \sum_{n \in \mathbb{N}} f(t_n) \frac{\kappa(t_n, z)}{\kappa(t_n, t_n)} = \sum_{n \in \mathbb{N}} f(t_n) \frac{Q(z)}{(z - t_n)Q'(t_n)}, \quad z \in \mathbb{C}$$

Where Q is an entire function having only simple zeros at $\{t_n\}$. This series converges absolutely and uniformly on compact subsets of \mathbb{C} .

Note: The entire function Q is such that $(z - t_n)\kappa(t_n, z) = \sigma_n Q(z)$ for some nonzero constants σ_n $n \in \mathbb{N}$.

Sampling in $\mathcal{H}(E)$. (Examples)

Example 1. The Paley-Wiener spaces PW_{π} corresponds to the de Branges space $\mathcal{H}(E)$ where the structure function is $E(z) = e^{-i\pi z}$; $A(z) = \cos(\pi z)$, $B(z) = \sin(\pi z)$ and the phase function is $\varphi(x) = \pi x$.

Example 2. (Makarov and Poltoratski.)

For $\nu \ge 1/2$ consider the second order differential Bessel equation:

$$-u'' + \left(\frac{\nu^2 - 1/4}{t^2}\right)u = zu, \quad 0 < t < 1,$$
(1)

イロト イ団ト イヨト イヨト

and the boundary condition which is satisfied by the solution

$$u_z(t) = \sqrt{t} J_\nu(t\sqrt{z}) \quad \text{of } (1).$$

Then:

• The associated Weyl inner function is

$$\Theta_{\nu}(z) = \frac{\sqrt{z}J_{\nu}'(\sqrt{z}) + (\frac{1}{2} + i)J_{\nu}(\sqrt{z})}{\sqrt{z}J_{\nu}'(\sqrt{z}) + (\frac{1}{2} - i)J_{\nu}(\sqrt{z})}$$

Sampling in $\mathcal{H}(E)$. (Examples)

Example 1. The Paley-Wiener spaces PW_{π} corresponds to the de Branges space $\mathcal{H}(E)$ where the structure function is $E(z) = e^{-i\pi z}$; $A(z) = \cos(\pi z)$, $B(z) = \sin(\pi z)$ and the phase function is $\varphi(x) = \pi x$.

Example 2. (Makarov and Poltoratski.)

For $\nu \geq 1/2$ consider the second order differential Bessel equation:

$$-u'' + \left(\frac{\nu^2 - 1/4}{t^2}\right)u = zu, \quad 0 < t < 1,$$
(1)

and the boundary condition which is satisfied by the solution

$$u_z(t) = \sqrt{t} J_\nu(t\sqrt{z}) \quad \text{of } (1).$$

Then:

The associated Weyl inner function is

$$\Theta_{\nu}(z) = \frac{\sqrt{z}J_{\nu}'(\sqrt{z}) + (\frac{1}{2} + i)J_{\nu}(\sqrt{z})}{\sqrt{z}J_{\nu}'(\sqrt{z}) + (\frac{1}{2} - i)J_{\nu}(\sqrt{z})}$$

Sampling in $\mathcal{H}(E)$ (Example)

Given an inner function Θ , we say that a strict de Branges function E is a de Branges function of Θ if

$$\Theta(z) = \frac{\overline{E(\overline{z})}}{E(z)}$$

- There is an even real entire function G_ν(z) such that J_ν(z) = z^νG_ν(z) and G_ν(0) ≠ 0.
- The function $F_{\nu}(z) = zG'_{\nu}(z)$ is an even real entire function. Therefore,

$$\Theta_{\nu}(z) = \frac{F_{\nu}(\sqrt{z}) + (\frac{1}{2} + \nu + i)G_{\nu}(\sqrt{z})}{F_{\nu}(\sqrt{z}) + (\frac{1}{2} + \nu - i)G_{\nu}(\sqrt{z})}$$

The function E_ν(z) := F_ν(√z) + (¹/₂ + ν − i)G_ν(√z) is a de Branges function of Θ_ν, which defines a de Branges space H(E_ν).

 $\begin{array}{c} \text{Motivation} \\ \text{The Hilbert space } \mathcal{H}_{K} \\ \text{Sampling in } \mathcal{H}_{K} \\ \text{Lagrange-type interpolation series in } \mathcal{H}_{K} \\ \text{The space } \mathcal{H}_{K} \text{ as de Branges space.} \end{array}$

Sampling in $\mathcal{H}(E)$ (Example)

Given an inner function Θ , we say that a strict de Branges function E is a de Branges function of Θ if

$$\Theta(z) = \frac{\overline{E(\overline{z})}}{\overline{E(z)}}$$

- There is an even real entire function G_ν(z) such that J_ν(z) = z^νG_ν(z) and G_ν(0) ≠ 0.
- The function $F_{\nu}(z) = zG'_{\nu}(z)$ is an even real entire function. Therefore,

$$\Theta_{\nu}(z) = \frac{F_{\nu}(\sqrt{z}) + (\frac{1}{2} + \nu + i)G_{\nu}(\sqrt{z})}{F_{\nu}(\sqrt{z}) + (\frac{1}{2} + \nu - i)G_{\nu}(\sqrt{z})}$$

• The function $E_{\nu}(z) := F_{\nu}(\sqrt{z}) + (\frac{1}{2} + \nu - i)G_{\nu}(\sqrt{z})$ is a de Branges function of Θ_{ν} , which defines a de Branges space $\mathcal{H}(E_{\nu})$.

Sampling in $\mathcal{H}(E)$ (Example)

We assume that $\nu = 1/2$. In this case, in the de Branges space $\mathcal{H}(E_{1/2})$ are obtained:

• $J_{1/2}(z) = \sqrt{\frac{2}{\pi z}} \sin z$ • $G_{1/2}(z) = z^{-1/2} J_{1/2}(z) = \sqrt{\frac{2}{\pi}} \frac{\sin z}{z}$. • $F_{1/2}(z) = zG'_{1/2}(z) = \sqrt{\frac{2}{\pi}} \frac{z \cos z - \sin z}{z}$.

Finally, assuming that $E_{1/2}(z) = A_{1/2}(z) - iB_{1/2}(z)$, in our case,

$$A_{1/2}(z) = F_{1/2}(\sqrt{z}) + G_{1/2}(\sqrt{z}), \quad B_{1/2}(z) = G_{1/2}(\sqrt{z})$$

The phase function for the space $\mathcal{H}(E_{1/2})$ is given by

$$\phi(x) = -\arctan \frac{-G_{1/2}(\sqrt{x})}{F_{1/2}(\sqrt{x}) + G_{1/2}(\sqrt{x})}$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

Sampling in $\mathcal{H}(E)$ (Example)

• For a given real number α , the sequence $\{t_n^{\alpha}\}$ should verify $\phi(t_n^{\alpha}) = \alpha \mod \pi$.

For this sequences $\{t_n^{\alpha}\}$, the sequence $\{\kappa(t_n^{\alpha}, z)\}$ is an orthogonal basis for $\mathcal{H}(E_{1/2})$ if and only if the function $e^{i\alpha}E_{1/2}(z) - e^{-i\alpha}\overline{E_{1/2}(\overline{z})}$ does not belong to $\mathcal{H}(E_{1/2})$.

This occurs for instance if $\alpha = 0$: The points $t_n^0 = n^2 \pi^2$ $n \in \mathbb{N}$, are the zeros of the function $B_{1/2}(z)$.

Then, for each f in $\mathcal{H}(E_{1/2})$ the following sampling formula holds

$$f(z) = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{\kappa(n^2 \pi^2, z)}{\kappa(n^2 \pi^2, n^2 \pi^2)} = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{2(-1)^n n^2 \pi^2 \sin \sqrt{z}}{(z - n^2 \pi^2)\sqrt{z}}, \ z \in \mathbb{C}.$$

i.e.,

$$f(z) = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{Q(z)}{(z - n^2 \pi^2)Q'(n^2 \pi^2)}, \ z \in \mathbb{C},$$

where $Q(z) = \sin \sqrt{z} / \sqrt{z}$ for $z \in \mathbb{C}$.

◆ロ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Sampling in $\mathcal{H}(E)$ (Example)

• For a given real number α , the sequence $\{t_n^{\alpha}\}$ should verify $\phi(t_n^{\alpha}) = \alpha \mod \pi$.

For this sequences $\{t_n^{\alpha}\}$, the sequence $\{\kappa(t_n^{\alpha}, z)\}$ is an orthogonal basis for $\mathcal{H}(E_{1/2})$ if and only if the function $e^{i\alpha}E_{1/2}(z) - e^{-i\alpha}\overline{E_{1/2}(\overline{z})}$ does not belong to $\mathcal{H}(E_{1/2})$.

This occurs for instance if $\alpha = 0$: The points $t_n^0 = n^2 \pi^2$ $n \in \mathbb{N}$, are the zeros of the function $B_{1/2}(z)$.

Then, for each f in $\mathcal{H}(E_{1/2})$ the following sampling formula holds

$$f(z) = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{\kappa(n^2 \pi^2, z)}{\kappa(n^2 \pi^2, n^2 \pi^2)} = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{2(-1)^n n^2 \pi^2 \sin \sqrt{z}}{(z - n^2 \pi^2)\sqrt{z}}, \ z \in \mathbb{C}.$$

i.e.,

$$f(z) = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{Q(z)}{(z - n^2 \pi^2)Q'(n^2 \pi^2)}, \ z \in \mathbb{C},$$

where $Q(z) = \sin \sqrt{z} / \sqrt{z}$ for $z \in \mathbb{C}$.

<ロ> <四> <回> <回> <三> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回</p>

Sampling in $\mathcal{H}(E)$ (Example)

• For a given real number α , the sequence $\{t_n^{\alpha}\}$ should verify $\phi(t_n^{\alpha}) = \alpha \mod \pi$.

For this sequences $\{t_n^{\alpha}\}$, the sequence $\{\kappa(t_n^{\alpha}, z)\}$ is an orthogonal basis for $\mathcal{H}(E_{1/2})$ if and only if the function $e^{i\alpha}E_{1/2}(z) - e^{-i\alpha}\overline{E_{1/2}(\overline{z})}$ does not belong to $\mathcal{H}(E_{1/2})$.

This occurs for instance if $\alpha = 0$: The points $t_n^0 = n^2 \pi^2$ $n \in \mathbb{N}$, are the zeros of the function $B_{1/2}(z)$.

Then, for each f in $\mathcal{H}(E_{1/2})$ the following sampling formula holds

$$f(z) = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{\kappa(n^2 \pi^2, z)}{\kappa(n^2 \pi^2, n^2 \pi^2)} = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{2(-1)^n n^2 \pi^2 \sin \sqrt{z}}{(z - n^2 \pi^2)\sqrt{z}}, \ z \in \mathbb{C}.$$

i.e.,

$$f(z) = \sum_{n=1}^{\infty} f(n^2 \pi^2) \frac{Q(z)}{(z - n^2 \pi^2)Q'(n^2 \pi^2)}, \ z \in \mathbb{C},$$

where $Q(z) = \sin \sqrt{z} / \sqrt{z}$ for $z \in \mathbb{C}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

The spaces \mathcal{H}_K as de Branges spaces

Theorem (Characterization of \mathcal{H}_K as a de Branges space.)

A space \mathcal{H}_{K} is a de Branges space if and only if there exists an orthogonal sampling formula

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C}.$$

in \mathcal{H}_K such that it can be written as a Lagrange-type interpolation formula

$$f(z) = \sum_{n=1}^{\infty} f(t_n) \frac{Q(z)}{(z - t_n)Q'(t_n)}, \quad z \in \mathbb{C}$$

where the sampling points $\{t_n\}_{n=1}^{\infty}$ are real, and Q is an entire function having simple zeros at $\{t_n\}_{n=1}^{\infty}$ and satisfying $\overline{Q(\overline{z})} = Q(z)$

The spaces \mathcal{H}_K as de Branges spaces

Theorem (Characterization of \mathcal{H}_K as a de Branges space.)

A space \mathcal{H}_{K} is a de Branges space if and only if there exists an orthogonal sampling formula

$$f(z) = \sum_{n=1}^{\infty} \frac{f(z_n)}{a_n} S_n(z), \quad z \in \mathbb{C}.$$

in \mathcal{H}_K such that it can be written as a Lagrange-type interpolation formula

$$f(z) = \sum_{n=1}^{\infty} f(t_n) \frac{Q(z)}{(z - t_n)Q'(t_n)}, \quad z \in \mathbb{C}$$

where the sampling points $\{t_n\}_{n=1}^{\infty}$ are real, and Q is an entire function having simple zeros at $\{t_n\}_{n=1}^{\infty}$ and satisfying $\overline{Q(\overline{z})} = Q(z)$

The spaces \mathcal{H}_K as de Branges spaces.

Example.

We consider the kernel $[K(z)](n) = P_n$, $n \in \mathbb{N}_0$ where $\{P_n\}_{n=0}^{\infty}$ is the sequence of orthonormal polynomials associated to an indeterminate Hamburger moment problem.

It is known that this kernel defines an analytic kramer kernel in $\ell^2(\mathbb{N}_0)$ and in the corresponding space

$$\mathcal{H}_{K} := \left\{ f(z) = \sum_{n=0}^{\infty} a_{n} P_{n}(z), \ z \in \mathbb{C}, \ \{a_{n}\}_{n=0}^{\infty} \in \ell^{2}(\mathbb{N}_{0}) \right\}$$

an orthogonal sampling formula holds. As a consequence, using the above theorem, \mathcal{H}_K is a de Branges space.

1. "De Branges spaces, Analytic Kramer kernels and Lagrange-type interpolation series". Accepted in *Complex Variables and Elliptic Equations*, 2011.

2. "The zero-removing property and Lagrange-type interpolation series". Accepted in *Num. Fun. Anal. and Optimin., 2011.*