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Abstract. We propose a new algorithm for the symmetric eigenproblem that computes eigen-
values and eigenvectors with high relative accuracy for the largest class of symmetric, definite and
indefinite, matrices known so far. The algorithm is divided into two stages: the first one com-
putes a singular value decomposition (SVD) with high relative accuracy, and the second one obtains
eigenvalues and eigenvectors from singular values and vectors. The SVD, used as a first stage, is
responsible both for the wide applicability of the algorithm and for being able to use only orthogonal
transformations, unlike previous algorithms in the literature. Theory, a complete error analysis, and
numerical experiments are presented.
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1. Introduction. An orthogonal spectral decomposition of a real symmetric n×n
matrix A is a factorization A = QΛQT , where Q is real orthogonal and Λ =
diag[λ1, . . . , λn] is diagonal. We assume that λ1 ≥ · · · ≥ λn. The columns qi, i =
1, . . . , n, of Q are the eigenvectors of A corresponding to the eigenvalues λi, i =
1, . . . , n. In this paper we present an algorithm that computes an orthogonal spectral
decomposition for the largest class (so far) of symmetric matrices with the following
high relative accuracy:

• The error in each computed eigenvalue, λ̂i , is

|λi − λ̂i| = O(κ ε)|λi|,(1)

where we assume that λ̂1 ≥ · · · ≥ λ̂n, ε is the unit roundoff of the finite arith-
metic employed in the computation and κ is a relevant condition number,
usually of order O(1), to be specified later in section 2.1.

• The angle Θ(qi, q̂i) between each computed eigenvector q̂i and the exact one
qi satisfies

Θ(qi, q̂i) =
O(κ ε)

relgap∗(|λi|) ,(2)

where

relgap∗(|λi|) = min

minj∈S
j �=i

∣∣∣∣ |λj | − |λi|
λi

∣∣∣∣ , 1


and the index set S is equal to {1, . . . , n} unless the eigenvalue, say λj0 , whose
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absolute value is closest to |λi| has opposite sign to λi. In that case, S is ob-
tained from {1, . . . , n} by removing j0 and the index k of any other eigenvalue
with the sign of λj0 satisfying |λj0 − λk| ≤ O(κε)|λj0 |. In plain words, we
remove from S the indices corresponding to eigenvalues with opposite sign to
λi whose absolute value is closest to |λi|.

Expression (2) depends on the quantity relgap∗, not on the eigenvalue relative
gap

relgap(λi) = min

{
min
j �=i

|λj − λi|
|λi| , 1

}
(3)

one would naturally expect. The reason is that the eigenvectors are computed via
the singular value decomposition (SVD), which is closely related to the spectral de-
composition for symmetric matrices. Postprocessing the singular vectors produces
eigenvectors with the accuracy (2). At the cost of worsening this bound in a few
cases, the error in the eigenvectors can be written in terms of (3): we will show in
section 5 that the error is

Θ(qi, q̂i) =
O(κ ε)

relgap(λi)
(4)

except in the case when λi and λj0 , the eigenvalue whose absolute value is closest
to |λi|, have opposite sign, and |λj0 | is much closer to |λi| than any other |λj | with
λjλi > 0. In that case,

Θ(qi, q̂i) =
O(κ ε)

min{relgap(λj0), relgap(λi)} .(5)

For the sake of simplicity, both bounds (4) and (5) have been presented in their
simplest forms, when no clusters of eigenvalues with close absolute values are present.
General bounds, valid in the presence of clusters, will be derived in section 5 for bases
of invariant subspaces.

Equations (1), (2) may allow a considerably more accurate outcome than that of
a conventional eigenvalue method, such as QR, divide-and-conquer, or bisection with
inverse iteration. Such algorithms produce results with high absolute accuracy, i.e.,
satisfying

|λi − λ̂i| = O(ε) max
j

|λj |,

instead of (1), and

Θ(qi, q̂i) =
O(ε)

minj �=i |λi−λj |
maxj |λj |

,

instead of (2). Thus, a conventional algorithm may provide approximations for the

small eigenvalues (
maxj |λj |

|λi| ∼ 1
ε ) with no correct significant digits, or even with the

wrong sign. Moreover, if there are two or more small eigenvalues, their eigenvectors
may be computed very inaccurately, even when the eigenvalues are well separated in
the relative sense (e.g., λi = 10−15 and λj = 10−16 if λ1 = 1). At present, high
relative accuracy can be reached only for certain classes of symmetric matrices.

Identifying classes of matrices for which either an SVD or a spectral decompo-
sition can be computed with high relative accuracy has been a very active area of
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research in the last 15 years (see [6] and references therein for an overview). So far,
high relative accuracy eigensolvers are available only for some symmetric matrices and
are far less developed than accurate SVD algorithms (except, of course, in the related
positive definite case [7]). To be more precise, several easily characterized classes of
matrices have been identified in [6] for which high relative accuracy SVDs can be com-
puted, while present symmetric indefinite eigensolvers deliver high relative accuracy
for matrices which are not easy to recognize (with the exception of scaled diagonally
dominant matrices [2]). As can be seen in [22, 27], the symmetric indefinite matri-
ces deserving high relative accuracy spectral decompositions have been characterized
through the structure of their positive semidefinite polar factors. This structure, how-
ever, is very difficult to relate with the structure of the matrix itself. In this regard,
the main contribution of the present paper is to prove that the proposed eigensolver
achieves high relative accuracy (1), (2) for all symmetric matrices in any of the classes
identified in [6]. Moreover, it will do so, under very general assumptions, for any class
of matrices eventually identified in the future for which high relative accuracy SVDs
can be computed. To our knowledge, none of the present symmetric eigensolvers can
guarantee high relative accuracy for the classes of matrices above.

The basic motivation for the algorithm we propose is to take advantage of the
present knowledge of several classes of matrices for which an SVD can be computed
with high relative accuracy (see [6] for a unified approach). The connection with
our work lies in that the SVD and the spectral decomposition are closely related for
symmetric1 matrices: the singular values are the absolute values of the eigenvalues,
and eigenvectors may be constructed from singular vectors. To be more precise, let
A = UΣV T be an SVD of A = AT , where U, V are n × n orthogonal with columns
ui, vi, i = 1, . . . , n, and Σ = diag[σ1, . . . , σn] with σ1 ≥ · · · ≥ σn ≥ 0. In the
simplest (and most frequent) case in which all singular values of A are distinct, the
eigenvalues of A are

(vT
i ui)σi,(6)

with vT
i ui = ±1 for all i = 1, . . . , n, and the corresponding eigenvectors are vi (ui

may be equally chosen). Hence, once an SVD is known, the only additional work to
obtain the eigenvalues is to determine the sign ±1 via the scalar product vT

i ui of
right and left singular vectors (the general case when groups of equal singular values
appear is discussed in section 3.1). Notice that vT

i Avi = vT
i uiσi; i.e., the scalar

product above can be thought of as a cheaper and indirect way of obtaining the sign
from the Rayleigh quotient, avoiding the multiplication by the matrix A, which may
give the wrong sign due to its large condition number (one example of this difficulty
will be shown at the end of section 3.3). In fact, this particular way of assigning
the signs through vT

i ui, together with the proof of its accuracy, is one of the crucial
issues in this paper.

Therefore, given a computed high relative accuracy SVD of A = AT satisfying

|σi − σ̂i| = O(κε) |σi|,(7)

Θ(vi, v̂i) =
O(κε)

relgap(σi)
, Θ(ui, ûi) =

O(κε)

relgap(σi)
,(8)

1All the results in this paper are valid for Hermitian matrices, although for the sake of simplicity
we restrict the discussion to the real symmetric case.
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with

relgap(σi) = min

{
min
j �=i

|σi − σj |
σi

, 1

}
,(9)

if we prove that the pair v̂i, ûi approximates the pair vi, ui closely enough so that
the computed value of the scalar product approximates ±1 with an absolute error
smaller than one (notice that this is no longer a high relative accuracy problem), then
we will achieve the accuracy (1). For the eigenvectors this naive approach leads to
Θ(qi, q̂i) = O(κε)/relgap(σi), which can be improved to (2) by processing the singular
vectors as described in section 5.

In this spirit we propose the following two-stage procedure to compute the eigen-
values and eigenvectors of a symmetric matrix:

Stage 1. Compute an SVD of A with accuracy (7) and (8).
Stage 2. Compute the eigenvalues of A by giving signs, according to (6), to the

singular values computed in Stage 1. The corresponding eigenvectors are the right
(or left) singular vectors computed in Stage 1. When groups of equal singular values
are present, this step becomes more involved (see section 3.3 below).

We will show that Stage 2 provides high relative accuracy in the eigenvalues (1)
and in the eigenvectors (2) as long as Stage 1 gives an SVD with small backward
multiplicative error (as in formula (17) below, that in turn guarantees (7) and (8)).
As to Stage 1, there are at present algorithms to perform it for several classes of
matrices, summarized in [6]. These are the algorithms we are going to use, although
any future high relative accuracy SVD algorithm may be employed for Stage 1.

One of the most remarkable contributions of Demmel et al. in [6] is the develop-
ment of algorithms which compute high relative accuracy SVDs (i.e., satisfying (7)
and (8)) for any matrix such that a so-called rank-revealing decomposition (RRD) can
be computed with enough accuracy. An RRD of G ∈ R

m×n, m ≥ n, is a factorization
G = XDYT with D ∈ R

r×r diagonal and nonsingular and X ∈ R
m×r, Y ∈ R

n×r,
where both matrices X , Y have full column rank and are well conditioned (notice
that this implies r = rank(G)). According to the structure of the algorithms in [6],
a more specific description of the signed SVD (SSVD) algorithm we propose here is
the following.

Algorithm 1. (SSVD)
Input: Symmetric matrix A.
Output: EigenvaluesΛ=diag[λi] and eigenvectorsQ=[q1 . . . qn];A=QΛQT.

1. Compute an RRD factorization XDY T of A.
2. Compute SVD XDY T = UΣV T of RRD using algorithms from

[6, section 3].

3. Compute the eigenvalues and eigenvectors of A from singular

values and singular vectors using Algorithm 3 (see section 5).

We warn the reader that, before presenting Algorithm 3, we will discuss a simpler
implementation of step 3 of Algorithm 1 which follows straightforwardly the ideas
explained after (6). This procedure, Algorithm 2 (see section 3.3), is introduced for
the sake of clarity; understanding Algorithm 3 is not easy starting from scratch, but
it is elementary once the error analysis for Algorithm 2 is done in section 4. We will
see there that Algorithm 2 delivers the announced accuracy (1) for eigenvalues but, in
some cases, computes eigenvectors less accurately than (2). However, the error bound
we obtain for eigenvectors suggests a modification in the eigenvector computation
which, maintaining the validity of the error analysis, improves the accuracy in the
eigenvectors to (2). This modification leads to Algorithm 3. We stress that both
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versions compute the same eigenvalues and differ only in the eigenvector computation
step, which is more accurate for Algorithm 3.

The accuracy required in [6] on the computed RRD matricesX, D, Y to guarantee
that a high relative accuracy SVD can be obtained is given by the following forward
error bounds:

|dii − δii| = O(ε)|δii|,
‖X −X‖ = O(ε)‖X‖,
‖Y − Y‖ = O(ε)‖Y‖,

(10)

where ‖ · ‖ denotes the spectral norm and dii, δii denote, respectively, the diagonal
elements of D, D. Once an RRD factorization XDY T satisfying (10) is available,
either Algorithm 3.1 or Algorithm 3.2 of [6] provides a high relative accuracy SVD of
XDY T with overall relative error (including the initial factorization stage) of order
O (ε max{κ(X), κ(Y )}) in the singular values, and O (ε max{κ(X), κ(Y )}) over the
relative gap (9) in the singular vectors, where κ(·) denotes the condition number in
the spectral norm. The key to proving this high relative accuracy is that both the
error (10) in the factorization and the errors introduced either by Algorithm 3.1 or
by Algorithm 3.2 of [6] produce a backward error of multiplicative type, instead of
the additive type usually produced by conventional algorithms (see section 2.1 for a
more detailed discussion).

Several classes of matrices have been found in the last 10 years for which it is
possible to compute an accurate RRD. They include bidiagonal, acyclic, Cauchy,
Vandermonde, graded, and scaled diagonally dominant matrices, as well as all well-
scalable symmetric positive definite matrices, some well-scalable symmetric indefinite
matrices, and many others. Hence, for all symmetric matrices in any of the classes
described in [6, pp. 26–27], Algorithm 1 will produce a spectral decomposition with
the high relative accuracy given by (1) and (2) under the criteria given in [6] for
computing accurate RRDs.

So far, the only general algorithm to compute high relative accuracy spectral
decompositions of symmetric indefinite matrices is the so-called implicit J-orthogonal
algorithm. It was introduced by Veselić in [26] and carefully analyzed by Slapničar
in [22]. This algorithm begins by computing a symmetric indefinite factorization
SJST of the matrix A = AT , where J is square diagonal with diagonal elements ±1,
and S has full column rank.2 If this factorization is computed with enough accuracy,
the J-orthogonal algorithm yields the eigenvalues with relative error of order O(κ̃ε)
for an appropriate condition number κ̃ which has been observed in practice to be of
order O(1). The eigenvectors are computed with error

Θ(qi, q̂i) =
O(κ̃ε)

relgap(λi)
(11)

depending on the natural eigenvalue relative gap (3). This accuracy is better than the
one obtained by Algorithm 1 in those cases in which the eigenvalue sign distribution is
the one described right before (5). This is an advantage with respect to the algorithm
proposed here. However, it should be stressed that, in view of both (4) and (5), when-
ever Algorithm 1 computes an eigenvector with error bound larger than the bound for

2Notice that, although SJST is not an RRD, its computation is equivalent to computing a
symmetric RRD of the form XDXT ; see [23].
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the J-orthogonal one, it must be due to the presence of some small eigenvalue relative
gap. Thus, some other eigenvector is computed by the J-orthogonal algorithm with
an error bound of similar magnitude. An illustrative example displaying this behavior
will be shown in Experiment 4 in section 6.2.

An important advantage of Algorithm 1 over the J-orthogonal algorithm is that
the latter does not guarantee high relative accuracy for the classes of symmetric
matrices discussed in [6]. The reason is that RRDs with the accuracy (10) are ob-
tained in [6] via Gaussian elimination with complete pivoting (GECP).3 Moreover,
a plain implementation of GECP does not guarantee accuracy (10) for most of the
classes in [6]. This can be achieved only through special, nontrivial implementations
of GECP, sometimes demanding a great deal of ingenuity (see [6, 5]). Since GECP
leads, in general, to RRDs with X �= Y, even if the matrix to be factorized is sym-
metric, the J-orthogonal algorithm cannot be directly applied because it begins with
the symmetric indefinite factorization. Numerical experiments show that the usual
algorithm [23] to compute the symmetric indefinite factorization does not provide, in
general, the required accuracy for the symmetric matrices in those classes demanding
special implementations of GECP. At present it is not known whether some modifi-
cations in the algorithm for the symmetric indefinite factorization would ensure that
it is accurately computed in the sense of (10) for these matrices.

There are other important differences between the algorithm by Veselić and
Slapničar and the one proposed below: the J-orthogonal algorithm uses hyperbolic
transformations [17, section 12.5.4], which complicates the error analysis and increases
the constants in the error bounds. The algorithm we propose here uses only orthogonal
transformations. Also, the error bounds for the hyperbolic J-orthogonal algorithm
are valid modulo a minor proviso (bounded growth of the scaled condition number
of certain matrices appearing in each step of the iteration), while the new algorithm
can be implemented in such a way that no proviso is needed to guarantee the error
bounds. On the other hand, the J-orthogonal algorithm may be easily extended to
matrix pencils, while this is not possible for the one presented here. There are also
similarities: both algorithms require a previous factorization of the matrix, and both
crucially depend on employing algorithms of one-sided Jacobi type.

Notice that the nonsymmetric character of Algorithm 1 is responsible both for
making it valid for a large class of matrices and for being able to use only orthogonal
transformations in step 2. The price to pay, however, is that by applying an SVD
algorithm (valid for any matrix) to a symmetric matrix, we are not making any use
of the symmetry of A. Thus, the algorithm is not backward stable, in the sense that
one cannot guarantee that the computed eigenvalues and eigenvectors are the exact
eigenvalues and eigenvectors of a close symmetric matrix. This is why Algorithm 1
produces an error bound in the eigenvectors which does not depend on the relative
gap between the eigenvalues. This does not happen if we use a symmetric algorithm
(such as the J-orthogonal algorithm) producing a symmetric backward error, since in
that case the relative perturbation theory for symmetric matrices [16, 20, 27] leads
to (11).

Concerning the computational cost of Algorithm 1, it is O(n3) provided the initial
RRD costs O(n3) (some classes of matrices allow an accurate RRD, but not at O(n3)
cost [6]). As is usual for high accuracy algorithms, Algorithm 1 is more expensive

3Some mention is also made in [6] of using QR with complete pivoting. This would open the
possibility of using Algorithm 3.3 of [6], which is less costly than Algorithms 3.1–3.2 for step 2 of
Algorithm 1.



AN ORTHOGONAL HIGH ACCURACY EIGENVALUE ALGORITHM 307

than other O(n3) conventional eigenvalue methods, such as QR, divide-and-conquer,
etc. The most expensive part of Algorithm 1 is the one-sided Jacobi method employed
in step 2. However, some ways have been recently found [14] to speed up one-sided
Jacobi which make it nearly as fast as the QR algorithm for SVD.

It is difficult to compare the cost of Algorithm 1 with that of the J-orthogonal
algorithm. If in both cases we do not count the initial factorization, the difference
between Algorithm 3.1 of [6] and Algorithm 3.3.1 of [22] seems to amount to two
matrix multiplications and one QR factorization. However, numerical experience
indicates that Algorithm 3.1 of [6] requires less Jacobi sweeps than Algorithm 3.3.1
of [22] (see section 6.2). Finally, step 3 of Algorithm 1 costs, in general, O(n2), but for
every cluster with d close singular values corresponding to eigenvalues of both signs,
and if eigenvectors need to be computed, there is an overhead cost of O(d3)+O(d2n).
Clearly, this is maximized when only one cluster of size d = n is present. Then, the
cost of step 3 is O(n3). As to the timing statistics, the run-times of both algorithms
are comparable according to the numerical experiments below.

Both the comments on the computational cost and the numerical experiments in
section 6.2 apply to a plain implementation of the one-sided Jacobi SVD algorithm
included in Algorithm 3.1 of [6]. At present, fast and sophisticated implementations
of the one-sided Jacobi SVD algorithm are being developed by Z. Drmač along the
lines of [14]. We have tested a preliminary version of this routine in a few numerical
experiments, and with this optimized Jacobi, Algorithm 1 was much faster than the
J-orthogonal algorithm. Extensive numerical experiments will be done in the future.

The rest of the paper is organized as follows. Section 2 collects the mathematical
results required to perform a complete error analysis of Algorithm 1. Section 3 de-
scribes in detail Algorithm 2, a preliminary implementation for step 3 of Algorithm 1,
including the corresponding pseudocode. Section 4 contains a complete error analysis
of a first, simpler implementation of Algorithm 1, using Algorithm 2 in step 3. This
is done in the most general setting, allowing for the presence of clusters, which is why
an entire section is devoted to discussing the error analysis. Otherwise, if the matrix
has well-separated singular values, the error analysis is straightforward. We remind
the reader that there are two reasons for doing the error analysis on this preliminary
implementation: first, this error analysis gives the idea of how to design the final Al-
gorithm 3 for step 3 of Algorithm 1. The second reason is that, once the error analysis
is done with Algorithm 2, no new error analysis is required for Algorithm 3. Section
5 is devoted to developing and analyzing Algorithm 3, proving the error bounds (2),
(4), and (5) in the most general setting, with any distribution of clusters. To keep the
presentation within limits, most of the proofs in section 5 have been omitted (see [10]
for complete proofs). However, in order to give a hint of the ideas and techniques em-
ployed we include in an appendix the proof of Theorem 5.7, one of the main results in
section 5. Section 6 addresses the practical implementation of Algorithm 1, together
with the numerical tests. Conclusions and discussion of open problems are presented
in section 7.

2. Preliminary results. We collect in this section the mathematical results
required to perform the error analysis of Algorithm 1. As stated in the introduc-
tion, the only requirement on the high relative accuracy SVD algorithm in step 2 of
Algorithm 1 is producing a small multiplicative backward error when performed in
finite arithmetic. A precise statement is given in section 2.1 for algorithms in [6]. We
also show in section 2.1 that the error due to the initial RRD can be absorbed as an
additional multiplicative backward error. Section 2.2 summarizes the multiplicative
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perturbation theory for singular values and for bases of singular subspaces needed to
guarantee the high relative accuracy of the overall algorithm.

2.1. Backward error of the SVD algorithm. The following theorem is es-
sentially proved in [6].

Theorem 2.1. Algorithm 3.1 of [6] (see Algorithm 4 in section 6.1 below) pro-
duces a multiplicative backward error when executed with machine precision ε; i.e.,
if G = XDY T ∈ R

m×n is the RRD computed in step 1 of Algorithm 1 and Û Σ̂V̂ T

is the SVD computed by the algorithm, then there exist matrices U ′ ∈ R
m×r, V ′ ∈

R
n×r, E ∈ R

m×m, F ∈ R
n×n such that U ′ and V ′ have orthonormal columns,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε),

‖E‖ = O(εκ(X)), ‖F‖ = O(εκ(R′)κ(Y )),
(12)

where R′ is the best conditioned row diagonal scaling of the triangular matrix R ap-
pearing in step 1 of Algorithm 3.1 of [6] and

(I + E)G(I + F ) = U ′Σ̂V ′T .(13)

It is proved in [6] that κ(R′) is at most of order O(n3/2κ(X)), but in practice we
have observed in extensive numerical tests that κ(R′) behaves as O(n). One can get
rid of the factor κ(R′) at the price of using the more costly Algorithm 3.2 of [6].

We state Theorem 2.1 because the original result [6, Thm. 3.1] is not phrased
as a backward error result, which is what we need for the subsequent error analysis.
The only missing piece in the analysis of [6] is the fact that one-sided Jacobi [17,
section 8.6.3] produces a small multiplicative backward error. This can be easily
derived from Proposition 3.13 in [13] and, since it is not central to our argument,
we omit its proof, together with that of Theorem 2.1. A full proof of both results
will appear elsewhere [11] (and can be found in [10, Appendix A]). Two different
versions of Algorithm 3.1 of [6] are analyzed in [11], depending on whether the right-
or left-handed version of one-sided Jacobi is employed. One can show that the right-
handed version, i.e., the one in which the Jacobi rotations are applied from the right,
guarantees smaller error bounds and leads precisely to Theorem 2.1. For the left-
handed version one can prove a result similar to Theorem 2.1, but with a weaker
error bound for F , and requiring a minor proviso to ensure the accuracy. However,
the left-handed version is still the one usually employed in practice since it is much
faster and no significant difference has ever been observed in accuracy. This is why we
use it in most of the experiments in section 6. Finally, it is crucial for the accuracy of
one-sided Jacobi algorithms to impose as a stopping criterion that the cosines of the
angles between the different columns (or rows, depending on the version of one-sided
Jacobi) be smaller than ε times the dimension of the matrix.

Once the backward error of the SVD algorithm is shown to be multiplicative, the
perturbation theory in section 2.2 below can be used to prove high relative accuracy,
namely that the computed singular values and vectors of XDY T satisfy

|σi − σ̂i| = O(κ ε)σi,

Θ(vi, v̂i) =
O(κ ε)

relgap(σi)
,

Θ(ui, ûi) =
O(κ ε)

relgap(σi)
,

(14)
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where

κ = κ(R′) max{κ(X), κ(Y )}(15)

is the relevant condition number announced in the introduction.
As a matter of fact, one may even absorb into a backward error of the form (13)

the error in the initial RRD, i.e., the one due to the fact that the SVD computation
does not start from the symmetric matrix A itself but from its computed RRD: let A =
XDYT be an exact RRD factorization of A and assume the starting decomposition
XDY T has been computed accurately enough so that the computed matricesX, D, Y
satisfy conditions (10). Then, as shown in the proof of Theorem 2.1 in [6], there exist
matrices Ef , Ff with ‖Ef‖ = O(εκ(X)), ‖Ff‖ = O(εκ(Y )) such that

(I + Ef )A(I + Ff ) = XDY T .(16)

This, together with (13), implies that

U ′Σ̂V
′T = (I + Ẽ)A(I + F̃ ),(17)

where the backward errors Ẽ, F̃ are of size ‖Ẽ‖ = O(εκ(X)), ‖F̃‖ = O(εκ(R′)κ(Y ))
and reflect that the errors produced by both the RRD factorization and the SVD
algorithm are backward multiplicative.

We stress that all our error analysis is done in terms of the backward errors
‖Ẽ‖ and ‖F̃‖. Although we have focused on the case when ‖Ef‖ = O(εκ(X)) and
‖Ff‖ = O(εκ(Y )), any other more general backward errors for the factorization step
can be trivially incorporated into the error analysis, since, up to first order,

‖Ẽ‖ ≤ ‖Ef‖+O(εκ(X)), ‖F̃‖ ≤ ‖Ff‖+O(εκ(R′)κ(Y )).

2.2. Multiplicative perturbation theory. Let G be a real m×n matrix with
SVD G = UΣV T and singular values σ1 ≥ σ2 ≥ · · · . We consider a multiplicative
perturbation G̃ = (I + E)G(I + F ) of G with SVD G̃ = Ũ Σ̃Ṽ T and singular values
σ̃i, also ordered decreasingly.

Theorem 2.2 (exactly Theorem 3.1 of [16]). Let G ∈ R
m×n, G̃ = (I+E)G(I+

F ), and set

η = max{‖E‖, ‖F‖}, η′ = 2η + η2.(18)

Then

|σi − σ̃i|
σi

≤ η′.

In addition to the change in the singular values, we also need to estimate the
changes undergone by singular subspaces or, more precisely, by their bases. Although
the following results are valid for rectangular matrices (see [20, 8]), we state them in
the square case, the only case we deal with in section 4. Thus, G is now a real n× n
matrix and G̃ = (I + E)G(I + F ). Let

G = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T
1

V T
2

]
,(19)

G̃ =
[
Ũ1 Ũ2

] [ Σ̃1 0

0 Σ̃2

][
Ṽ T
1

Ṽ T
2

]
(20)
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be two conformally partitioned SVDs of G and G̃; i.e., the four matrices Σ1, Σ̃1 ∈ R
q×q

and Σ2, Σ̃2 ∈ R
(n−q)×(n−q) are diagonal. No particular order is assumed on the

singular values. The change in the singular subspaces is usually measured through
the sines of the canonical angles Θ(U1, Ũ1) between the column spaces of U1 and Ũ1,

and Θ(V1, Ṽ1) between the column spaces of V1 and Ṽ1 (see [25]). It is well known
that this change is governed (see, e.g., [20, Thm. 4.1]) by the singular value relative
gap

rg(Σ1, Σ̃2) = min
σ∈σ(Σ1)

σ̃∈σ(Σ̃2)

|σ − σ̃|
σ̃

,(21)

where σ(M) denotes the set of singular values of the matrix M .
This kind of result, however, is not enough for our purposes. The fact that the

signs of the eigenvalues are obtained through scalar products like the one in (6) forces
us to accurately compute not only the singular subspaces but also the corresponding
simultaneous bases Ui and Vi. To ensure this, finer perturbation results are needed,
dealing with the sensitivity of the bases themselves. It has been observed in [8]
that simultaneous bases of singular subspaces do not have the same sensitivity under
perturbation as their corresponding singular subspaces. More precisely, bases may be
much more sensitive to additive perturbations than singular subspaces. Fortunately
enough for our purposes, both sensitivities are essentially equal for multiplicative
perturbations. A detailed discussion of these issues may be found in [8, 9], including
a stronger version of the following result (we use the Frobenius norm ‖·‖F , as is usual
when the dimension of the subspaces is larger than 1).

Theorem 2.3 (exactly Theorem 2.2 of [8]). Let G ∈ R
n×n and G̃ = (I +

E)G(I + F ) with respective SVDs (19) and (20). Then there exists an orthogonal
matrix P ∈ R

q×q such that

√
‖U1P − Ũ1‖2F + ‖V1P − Ṽ1‖2F ≤ 2

√
q

[
η +

η′

1− η

1

relgap(Σ1, Σ̃2)

]
,(22)

where relgap(Σ1, Σ̃2) is given by

relgap(Σ1, Σ̃2) = min{rg(Σ1, Σ̃2), 1},(23)

and η, η′ are given by (18).
Although it is more usual in the literature [6, 5] to define the relative gap (21)

with the roles of Σ1 and Σ2 reversed, we have chosen the definition above to conform
to the cited perturbation theorems. However, this does not represent any significant
difference in the error bounds, since a straightforward calculation shows that

2 relgap(Σ̃2,Σ1) ≥ relgap(Σ1, Σ̃2) ≥ 1

2
relgap(Σ̃2,Σ1).(24)

On the other hand, as is usual in this kind of perturbation bounds, one can reformulate
the definition of the gaps to make them depend only on the unperturbed singular
values, at the cost of somewhat complicating the bounds.
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The main point of Theorem 2.3 is that the orthogonal matrix P is the same for
both left and right singular vectors. This will be enough to guarantee the accuracy
of the sign assignment and of the computed bases of invariant subspaces.4

3. Computing spectral decompositions from SVDs. This section is di-
vided into three parts. Section 3.1 outlines the mathematical basis for the main idea
underlying Algorithm 1, namely that one can easily get a spectral decomposition of
a symmetric matrix if one is given an SVD, even if the matrix has groups of equal
singular values. Some practical details concerning clusters of close singular values in
finite precision will be considered in section 3.2. The complete pseudocode for Algo-
rithm 2 will be presented in section 3.3. This is the simplest implementation of step
3 in Algorithm 1.

3.1. Mathematical basis. Let A ∈ R
n×n be a symmetric matrix with SVD

A = UΣV T . Then, V TAV = V TUΣ is orthogonally similar to A with V TU or-
thogonal. If A has distinct singular values σ1 > σ2 > · · · > σp with respective
multiplicities mi, i = 1, . . . , p (m1 + · · · + mp = n), and we partition U and V ac-
cordingly as

U =
[ U1 U2 · · · Up

]
,

V =
[ V1 V2 · · · Vp

]
with Ui, Vi ∈ R

n×mi corresponding to each distinct singular value, then

VT
i Uj = 0 whenever i �= j(25)

since, due to the symmetry of A, both its left and right singular vectors are eigenvec-
tors of A2. Consequently,

V TU = diag[VT
1 U1, . . . ,VT

p Up](26)

is block-diagonal, where each diagonal block VT
i Ui ∈ R

mi×mi is itself orthogonal.
Furthermore, since

V TAV = diag[σ1VT
1 U1, . . . , σpVT

p Up](27)

is symmetric, we conclude that each VT
i Ui is not only orthogonal but also symmet-

ric and its eigenvalues, ±1, are precisely the signs of those eigenvalues of A having
modulus σi. In the simplest case when mi = 1, the eigenvalue is just vT

i ui σi. In the
general case, a simple calculation shows that if the spectrum of VT

i Ui contains m+
i

eigenvalues equal to 1 and m−
i equal to −1 (mi = m+

i +m−
i ), then

m±
i =

mi ± trace(VT
i Ui)

2
;(28)

i.e., the multiplicity of the eigenvalues ±σi can be easily recovered from the trace of
VT

i Ui.

4Actually, Theorem2.3 is stronger than the usual bounds on the canonical angles between singular

subspaces, since one can easily show that ‖ sin(Θ(U1, Ũ1))‖F ≤ ‖U1 P − Ũ1‖F , which holds similarly
for V1.
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To obtain the eigenvectors of A, the simplest (and more frequent) case corresponds
to mi = 1. In that case, the right singular vector vi itself is an eigenvector. When
some mi is larger than 1 and trace(VT

i Ui) = mi (resp., trace(VT
i Ui) = −mi), the

mi eigenvalues are all equal to σi (resp., −σi), and the eigenvectors are the columns
of Vi. In the general case mi > 1, mi �= m±

i , consider for each i = 1, . . . , p an
orthogonal diagonalization of VT

i Ui = WiJiWT
i , with Ji = diag[Im+

i
,−Im−

i
] and

Wi = [W+
i |W−

i ] ∈ R
mi×mi partitioned conformally to Ji. Then, denoting W =

diag[W1, . . . ,Wp], one can easily check that the matrix Q = VW is such that

QTAQ = diag[σ1J1, . . . , σpJp];

i.e., the set of columns of the submatrix Q+
i = ViW+

i ∈ R
n×m+

i (resp., Q−
i = ViW−

i ∈
R

n×m−
i ) is a basis of the eigenspace corresponding to the eigenvalue σi (resp., −σi)

of A. In other words, A = QΛQT with Λ = diag[±σi] is a spectral decomposition
of A.

We conclude by noting that, although the right singular vectors Vi have been used
throughout the argument, the symmetry of A implies that similar results hold using
instead the left singular vectors Ui.

3.2. Clusters in finite arithmetic. We have seen how to deal theoretically
with groups of equal singular values. When working in finite precision, however, it
is unlikely that some of the singular values in the output of step 2 of Algorithm 1
come out equal. But at the same time the expected accuracy (14) determines that
some of the singular values should be considered as numerically indistinguishable and
treated in the spirit of section 3.1. Thus we are forced to deal with, say, k different
groups Σi of ni close singular values (i = 1, . . . , k, n1 + · · ·+ nk = n), which we call
clusters.5 The criterion to divide the singular values into clusters is crucial for the
final accuracy of Algorithm 1. This criterion will be carefully analyzed in section 4.4,
where we show that to achieve the accuracy (1) (see Theorem 4.3) it is enough to
include two contiguous singular values σj , σj+1 in the same cluster whenever

|σj − σj+1|
σj

≤ C κ ε(29)

for a suitable constant C, where

κ = κ(R′)max{κ(X), κ(Y )}

is the quantity (15) which came up in the error bound for the singular values computed
in step 2 of Algorithm 1 (see section 4.4 for more on the choice of the constant C; we
mention here that in the performed numerical experiments the choice C = 1 always
gives very satisfactory results).

For each cluster Σi we take matrices Ui, Vi ∈ R
n×ni whose columns are, respec-

tively, left and right singular vectors corresponding to the singular values in Σi. Since
the singular values in Σi are, in general, different, each Ui and Vi is made up with
several of the matrices Uj and Vj defined in section 3.1. Consequently, the products
∆i = V T

i Ui are symmetric, orthogonal, and block-diagonal matrices whose diagonal
blocks are some of the blocks VT

j Uj .

5For the sake of brevity, we use Σi to denote both the cluster of singular values and the corre-
sponding ni × ni diagonal matrix.
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We conclude by noting that the numbers n+i of positive and n−
i of negative eigen-

values with absolute values in the cluster Σi are still given by a formula such as (28).
As to the eigenvectors, things are different from section 3.1, since the diagonalization
of ∆i does not lead, in general, to eigenvectors but just to two orthonormal bases,
one for the invariant subspace corresponding to the positive eigenvalues in the cluster
Σi and another for the negative ones. This is a fundamental issue in the error analysis
for the eigenvector computations and will be carefully explained throughout the proof
of Theorem 4.4.

3.3. A first version of step 3 of Algorithm 1. In this section we describe
Algorithm2, the first implementation of step 3 in Algorithm1. The eigenvalue and the
eigenvector computations are separated in the procedure into two independent parts.
Doing this helps us to better understand the structure of Algorithm 3, our final
implementation of step 3 in Algorithm 1, which will only insert a different cluster
selection routine in between the eigenvalue and the eigenvector computations.

Algorithm 2.
Input: SVD of a symmetric matrix A = UΣV T.

Output: EigenvaluesΛ=diag[λi] and eigenvectors Q =[q1 . . . qn];A= QΛQT.

1. Decide the singular value clusters, Σi = {σi0 , . . . , σi0+ni−1}, Ui, Vi,
i = 1, . . . , k, according to (29).

2. Compute the eigenvalues using Algorithm 2.1 below.

3. Compute the eigenvectors using Algorithm 2.2 below.

Algorithm 2.1.
Input: SVD of A = UΣV T; Clusters Σ1,Σ2, . . . ,Σk.

Output: Eigenvalues Λ.
1. for each cluster, i = 1 : k
2. compute the diagonal elements of ∆i = V T

i Ui

3. if ni = 1 then
4. λi0 = sign(∆i)σi0

5. else
6. for j = i0 : i0 + ni − 1
7. λj = sign[(∆i)jj ]σj

8. endfor
9. ti = trace(∆i), n−

i = ni−ti
2

10. if #{(∆i)jj < 0} �= n−
i then

11. for j = i0 : i0 + n−
i − 1

12. λj = −σj

13. endfor
14. for j = i0 + n−

i : i0 + ni − 1
15. λj = σj

16. endfor
17. endif
18. endif
19. endfor

Algorithm 2.2.
Input: SVD of A = UΣV T; Clusters Σ1,Σ2, . . . ,Σk; Eigenvalues Λ.
Output: Eigenvectors Q = [q1 . . . qn].
Notation:Q±

i denotes the eigenvector matrix corresponding to positive

(resp., negative) eigenvalues in Σi.
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1. for each cluster, i = 1 : k
2. if ni = 1 then
3. qi0 = vi0

4. else
5. n−

i ≡ number of negative eigenvalues in Σi

6. if n−
i = 0 then

7. Q+
i = Vi

8. elseif n−
i = ni then

9. Q−
i = Vi

10. else
11. multiply ∆i = V T

i Ui

12. diagonalize ∆i = [W+
i W−

i ]Ji[W
+
i W−

i ]T

13. Q+
i = ViW

+
i , Q−

i = ViW
−
i

14. endif
15. endif
16. endfor
Some comments on this code are in order. First, we have singled out the case

ni = 1, although it is not needed. This is done to highlight the fact that Algorithm 2
is extremely simple in this case, with all complications coming from the case ni > 1.

Notice also that the code does not compute eigenvectors associated with zero
eigenvalues in the case where r = rank(A) < n. This is due to the fact that the SVD
algorithms in [6] do not compute null vectors. However, if accurate null vectors are
needed, they can be obtained as the last n− r columns of the orthogonal factor in a
complete QR factorization of the matrix V of right singular vectors.

If large clusters are present, one can save flops in steps 11 and 13 of Algorithm
2.2 by employing Strassen multiplication without spoiling the accuracy of the overall
algorithm. As to the diagonalization step, step 12 of Algorithm 2.2, it is assumed
that one performs it on a symmetrization of ∆i. This is crucial to obtain orthonormal
eigenvectors.

Notice that the eigenvalue sign assignment (steps 6–17 of Algorithm 2.1) is done
in two stages when there are clusters: First (steps 6–8), we assign the signs given by
the diagonal elements of ∆i = V T

i Ui as if the singular values in Σi were not a cluster.

If the number of assigned negative eigenvalues coincides with n−
i = ni−trace(∆i)

2 , the
signs are kept. Otherwise, we proceed as described in steps 10–17 of Algorithm 2.1.
The reason for this is that the random sign assignment inside each cluster in steps
10–17 proved to be too pessimistic in practice: although singular values inside each
cluster are numerically indistinguishable according to (14), actual errors are frequently
smaller than the error bounds. These smaller errors are lost if the signs of eigenvalues
are randomly assigned. The modified procedure minimizes this loss of accuracy.

We finish this section with an interesting remark on the way the signs are assigned
in Algorithm 2. One might think of obtaining the sign of each eigenvalue from the
Rayleigh quotients vT

i Avi, one of the most common ways of approximating eigenval-
ues, instead of from vT

i ui. However, it is easy to construct examples for which the sign
of vT

i Avi is wrong, while the sign of v
T
i ui is right. We propose the following numerical

example, easily reproducible in MATLAB 5.3: Generate a 100×100 symmetric Cauchy
matrix with parameters xi = yi ≡ ri, i = 1 : 100, where ri is a random number chosen
from a normal distribution with mean zero and variance one. Scale this matrix on
both sides by the same diagonal matrix with diagonal elements di = 1020r′

i , where r′i
is a random number chosen from a uniform distribution on the interval (0.0, 1.0). For
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matrices of this kind Algorithm 3 in [5] can be used to obtain in a very simple way an
RRD, A = XDY T , with forward errors fulfilling (10). Finally, applying Algorithm
3.1 of [6] to this RRD yields an SVD of A with high relative accuracy. No clusters of
singular values are present in general. For several of the computed singular vectors
neither vT

i Avi nor (v
T
i X)D(Y T vi) have the same sign of vT

i ui, which is the correct
one, as will be shown in section 4 (the reader also can check this by using a symbolic
package such as Mathematica in very high precision). This example shows that using
Rayleigh quotients may be dangerous, even in the case when the matrix is given as an
RRD. Similar behavior is not rare in other Cauchy matrices or in random RRDs with
very ill-conditioned diagonals. The use of Rayleigh quotients in the more favorable
case when the matrix A is scaled in a certain particular way is covered in [15].

4. Error analysis. In this section we present the rounding error analysis for
the eigenvalues and the eigenvectors computed by Algorithm 1 using Algorithm 2 in
step 3. This error analysis remains valid for Algorithm 1 using Algorithm 3 in step 3:
this is trivially true for the eigenvalues, since both versions of Algorithm 1 compute
the same eigenvalues. It is also true for the eigenvectors, due to the generality of the
error analysis, which allows us to use the new clusters of singular values appearing in
Algorithm 3.

We stress that the error analysis applies to the entire Algorithm1, since it relies on
the backward multiplicative error formula (17), which absorbs the errors of the initial
factorization in step 1. Although we focus on the case when the RRD is computed with
the error (10), which ensures ‖Ef‖ = O(εκ(X)) and ‖Ff‖ = O(εκ(Y )), any other
more general backward errors for the factorization step can be trivially incorporated
into the error analysis, as explained at the end of section 2.1.

The main results in this section are the forward error bounds in Theorems 4.3
and 4.7. Both are expressed in big-O notation, without explicitly specifying the
dimensional constants involved. There are two reasons for this. First, we rely on
error bounds in [6], which are written in big-O notation without explicit mention of
the constants. Second, it is well known that the precise value of the constant is, in
general, not relevant for practical purposes.

This said, the reader should be aware that in the statements of the theorems in
this section we absorb moderately growing functions of the dimensions (either n, of
the whole matrix, or ni, of the clusters) as constants inside the O(κε). Since none of
them exceeds a moderate number times n2, we choose not to write them explicitly in
order not to complicate further the error bounds. However, the interested reader may
find those corresponding to step 3 of Algorithm 1 explicitly stated in the proofs.

The error analysis is performed in the most general case when clusters of singular
values are present. This somewhat complicates the analysis, which is almost straight-
forward in the simple (and most likely) case of matrices whose singular values are
distinct enough. The practical criterion to decide when two singular values belong to
the same cluster is also discussed in detail.

In the rest of this section we only deal with the error in nonzero eigenvalues
and the corresponding eigenvectors. If the original matrix is singular, the number
of zero eigenvalues is determined exactly, provided an RRD factorization fulfilling
(10) is computed. As to the null vectors, it can be shown that they can be computed
with error O(ε κ(R′) max{κ(X), κ(Y )}) using the method already described following
Algorithm 2.2. The relative gap does not appear because in this case it is equal to
one.

We begin by fixing our model for floating point arithmetic and the notation.
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4.1. Model of arithmetic. We use the conventional error model for floating
point arithmetic,

fl(a� b) = (a� b)(1 + δ),(30)

where a and b are real floating point numbers, � ∈ {+,−,×, /}, and |δ| ≤ ε, where
ε is the machine precision. Moreover, we assume that neither overflow nor underflow
occurs. We stress that the results proved in this section still hold under a weaker
error model valid for arithmetic with no guard digit.

The error analysis below also remains valid for complex Hermitian matrices,
since [18, Chapter 3] the equality (30) continues to hold for complex numbers with δ
a small complex number bounded by |δ| = O(ε). However, in order to simplify the
presentation we consider only real symmetric matrices.

Finally, we will commit a slight abuse of notation, denoting by fl(expr) the
computed result in finite precision of expression expr, instead of its rigorous meaning
of the closest floating point number to expr.

4.2. Notation. Letters with hats denote computed quantities appearing in any
step of Algorithm 1. The same letters without hats denote their exact counterparts.
It is assumed that the input of Algorithm 1 is a real symmetric n × n matrix A, for
which an RRD factorization XDY T with small multiplicative backward error (16)
can be computed.

We assume that k different clusters Σ̂i of ni (n1 + · · · + nk = n) close singular
values are identified through criterion (29); thus, the usual decreasing order on singular
values determines the unknown exact clusters Σi. The singular values of one particular
cluster are supposed to be different from the singular values of any other cluster. Given
an index i ∈ {1, . . . , k}, we define

Σī =
⋃
j �=i

Σj .(31)

For each cluster Σi we take matrices Ui, Vi ∈ R
n×ni whose columns are, respectively,

left and right singular vectors corresponding to the singular values in Σi. Recall that
the singular values in Σi may be different, so both Ui and Vi will, in general, contain
singular vectors corresponding to different singular values. Therefore, the remarks in
section 3.2 apply.

Many nontrivial choices are possible for the exact quantities Ui, Vi if A has mul-
tiple singular values in Σi. In that case, the results proved in this section are valid
for any possible choice of Ui and Vi, provided their columns are singular vectors and
not simply bases of the corresponding singular subspaces.

4.3. Fundamental lemma. The following lemma, which is a simple conse-
quence of the fundamental perturbation theorem, Theorem 2.3, and the multiplicative
backward error formula (17) for steps 1 and 2 of Algorithm 1, is the starting point of
our error analysis. For the sake of brevity, the quantities Ki will be defined inside
Lemma 4.1. These quantities play a relevant role in the error analysis.

Lemma 4.1. Let Ûi, V̂i ∈ R
n×ni be the matrices of computed left and right sin-

gular vectors corresponding to the cluster of singular values Σ̂i computed by steps
1–2 of Algorithm 1 applied to the symmetric matrix A. Let Ui, Vi, Σi be their exact
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counterparts. Then, there exists an exact orthogonal matrix Pi such that

Ki ≡
√
‖UiPi − Ûi‖2F + ‖ViPi − V̂i‖2F ≤ O(κ ε)

relgap(Σi, Σ̂ī)
(32)

with κ given by (15).

Proof. Let U ′
i , V

′
i be the submatrices corresponding to Σ̂i of the exact orthogonal

matrices U ′ and V ′ appearing in (17). Then, Theorem 2.3 applied to (17) guarantees
that there exists an orthogonal ni × ni matrix Pi such that√

‖UiPi − U ′
i‖2F + ‖ViPi − V ′

i ‖2F =

∥∥∥∥[ UiPi − U ′
i

ViPi − V ′
i

]∥∥∥∥
F

≤ O(κ ε)

relgap(Σi, Σ̂ī)
.

Notice that √
‖UiPi − Ûi‖2F + ‖ViPi − V̂i‖2F =

∥∥∥∥∥
[

UiPi − Ûi

ViPi − V̂i

]∥∥∥∥∥
F

,

so the triangular inequality implies√
‖UiPi − Ûi‖2F + ‖ViPi − V̂i‖2F ≤

∥∥∥∥[ UiPi − U ′
i

ViPi − V ′
i

]∥∥∥∥
F

+

∥∥∥∥∥
[

U ′
i − Ûi

V ′
i − V̂i

]∥∥∥∥∥
F

.

The last term in the right-hand side of this inequality is O(ε) by (12). This concludes
the proof.

Lemma 4.1 gives a forward error bound for simultaneous orthonormal bases of
singular subspaces, which depends only on the quantities ‖Ẽ‖ and ‖F̃‖ appearing
in (17). In other words, it only accounts for errors corresponding to steps 1 and 2 of
Algorithm 1, i.e., to the SVD computation.

The rest of the bounds obtained in this section, i.e., those corresponding to step
3 of Algorithm 1, depend, for each cluster, on the quantities Ki on the left-hand side
of (32). This allows us to write all subsequent error bounds as a function of Ki and
to trace how each of the steps in Algorithm 2 contributes to the final error. From now
on we assume that all quantities Ki for i = 1, . . . , k are sufficiently smaller than 1,
which, according to Lemma 4.1, is the case whenever the clusters of singular values
are properly chosen. More precisely, all we need is that Ki be small enough to make
all bounds in sections 4.4 and 4.5 strictly smaller than one.

4.4. Error bounds for eigenvalues and cluster criterion. We begin by
analyzing the error produced in the computation of trace(V T

i Ui) using the standard
inner product algorithm.

Lemma 4.2. Let Ûi, V̂i ∈ R
n×ni be the matrices of computed left and right sin-

gular vectors corresponding to the cluster of singular values Σ̂i computed by steps 1–2
of Algorithm 1 applied to the symmetric matrix A. Let Ui, Vi, Σi be their exact
counterparts. Then,∣∣∣fl( trace(fl( V̂ T

i Ûi )) )− trace(V T
i Ui )

∣∣∣ ≤ √
ni

(√
2Ki +

K2
i

2

)
+O(ε)

≤ O(κ ε)

relgap(Σi, Σ̂ī)
(33)

with κ given by (15) and Ki by (32).
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Proof. First observe that∣∣∣fl( trace(fl( V̂ T
i Ûi )) )− trace(V T

i Ui )
∣∣∣ ≤ ∣∣∣fl( trace(fl( V̂ T

i Ûi )) )− trace( V̂ T
i Ûi )

∣∣∣
+
∣∣∣trace( V̂ T

i Ûi )− trace(V T
i Ui )

∣∣∣ .(34)

Taking into account that the norm of the columns of Ûi and V̂i is close to one by
(12), a straightforward error analysis [18, Chapter 3] shows that the first term in the
right-hand side of inequality (34) is ni(n+ni)ε+O(ε2). If Pi is the orthogonal matrix
appearing in Lemma 4.1, the last term fulfills∣∣∣trace( V̂ T

i Ûi )− trace(V T
i Ui )

∣∣∣ = ∣∣∣trace( V̂ T
i Ûi )− trace(PT

i V T
i UiPi )

∣∣∣
≤ √

ni

√√√√ ni∑
k=1

∣∣∣( V̂ T
i Ûi − PT

i V T
i UiPi )kk

∣∣∣2
≤ √

ni ‖V̂ T
i Ûi − (ViPi)

TUiPi‖F .(35)

Now define matrices ∆u and ∆v such that

Ûi = UiPi +∆u and V̂i = ViPi +∆v.(36)

Combining (35) and (36) yields∣∣∣trace( V̂ T
i Ûi )− trace(V T

i Ui )
∣∣∣ ≤ √

ni ( ‖∆u‖F + ‖∆v‖F + ‖∆u‖F ‖∆v‖F ),

where we have used that ‖CD‖F ≤ ‖C‖2‖D‖F for any matrices C, D, together
with the fact that the spectral norm of any matrix with orthonormal columns is one.
Finally, setting Ki =

√‖∆u‖2F + ‖∆v‖2F as in (32), we obtain, after some direct
manipulations, the desired result.

Notice that trace
(
V T

i Ui

)
may only take the integer values −ni,−ni+2, . . . , ni −

4, ni − 2, ni, since V T
i Ui is symmetric and orthogonal. Thus, it is sufficient that the

error bound in (33) be less than one to compute exactly the value of trace
(
V T

i Ui

)
.

This can be done by obtaining ti, the nearest integer to fl( trace( fl( V̂ T
i Ûi ) ) ) with

the parity of ni. Then, the integer computation (with integer variables) of (ni − ti)/2
yields n−

i , the exact number of negative eigenvalues included in the cluster Σi of
singular values. The exact number of positive eigenvalues is obtained from the integer
computation of ni − n−

i .
We stress that the conditions∣∣∣fl( trace(fl( V̂ T

i Ûi ) ) )− trace(V T
i Ui )

∣∣∣ < 1, i = 1, . . . , k,(37)

which ensure that signs are correctly assigned, determine the cluster criterion to be
used in Algorithm 2. Giving a rigorous criterion would require an exact knowledge of
the constants involved in the big-O bound in (33), which in any case are too pessimistic

in practice. Instead, we assume that the singular values in each cluster Σ̂i satisfy

relgap(Σi, Σ̂ī) ≈ relgap(Σ̂i, Σ̂ī) > Cεκ(R′)max(κ(X), κ(Y ))

for a suitable constant C. This can be obtained by defining that two contiguous
singular values σ̂j ≥ σ̂j+1 belong to the same cluster whenever

|σ̂j − σ̂j+1|
σ̂j

≤ C κ ε,
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i.e., whenever condition (29) above holds. Choosing a large C ensures (37) and, as a
consequence, that the number of positive/negative eigenvalues is correctly computed.
However, a large value for C favors the mixing of different singular values in the
same cluster and, since the signs are assigned more or less randomly within each
cluster, the error bound in the eigenvalues becomes roughly the product of C times
the bound in the singular values (see (14)). Therefore, the choice of C is subject to
a certain trade-off. A sensible choice might be choosing C between 1 and 10. All the
numerical experiments in section 6 have been done with C = 1 and the results are
very satisfactory.

In any case, notice that, on one hand, the singular values are computed with the
accuracy given by (17) and Theorem 2.2. On the other hand, their signs as eigenvalues
of A are correctly assigned whenever the bound (33) is less than one. With this we
have proved the main result of this subsection.

Theorem 4.3. Let A be an n× n real symmetric matrix for which it is possible
to compute an RRD fulfilling (10). Let λ1 ≥ · · · ≥ λn be the eigenvalues of A and

λ̂1 ≥ · · · ≥ λ̂n be the approximations to the eigenvalues of A computed by Algorithm 1.
Let Ûi, V̂i ∈ R

n×ni be the matrices of computed left and right singular vectors corre-
sponding to the cluster of computed singular values Σ̂i, and let Ui, Vi, Σi be their
exact counterparts. Assume that all clusters have been chosen according to (29), so
that conditions (37) hold. Then

|λj − λ̂j | = |λj | O(εκ(R′)max(κ(X), κ(Y ))), j = 1, . . . , n.(38)

The error bound (38) holds even for zero eigenvalues, since the exact number of
zero eigenvalues of A is known once an RRD factorization satisfying (10) is available.

4.5. Error bounds for eigenvectors. In this section we obtain bounds on
the distance between bases of invariant subspaces. Although it is more common to
bound the sines of the canonical angles between the exact and the computed invariant
subspaces [25], we choose to compare the bases themselves because, as explained before
Theorem 2.3, bases play an essential role both in Algorithm 2 and in its error analysis.
However, usual sin Θ bounds easily follow from Theorem 4.7, since distances between
bases and canonical angles between subspaces are closely related [25, Thms. I.5.2 and
II.4.11] and the same bounds hold for both, up to a factor

√
2 in Frobenius norm.

One important issue in the subsequent analysis comes from step 12 of Algo-
rithm 2.2 in which the ni × ni matrix V̂ T

i Ûi is orthogonally diagonalized for each

cluster Σ̂i. Lemma 4.1 shows that the matrices Ûi, V̂i of computed singular vectors
are not reliable approximations of the matrices of exact singular vectors Ui, Vi, but
just reliable approximations of UiPi and ViPi, with Pi the unknown ni×ni orthogonal
matrix in Lemma 4.1. Hence, we are forced in practice to diagonalize approximations
to matrices PT

i V T
i UiPi. Theorem 4.4 shows that this is enough to get orthonormal

bases of invariant subspaces, although not for obtaining eigenvectors.
Theorem 4.4. Let A be a symmetric n × n matrix and Ui, Vi ∈ R

n×ni be
matrices of left and right singular vectors of A corresponding to a cluster of nonzero
singular values Σi, different from the rest of the singular values of A. Let Pi be any
ni ×ni orthogonal matrix, and consider any orthogonal diagonalization of the ni ×ni

orthogonal and symmetric matrix PT
i V T

i UiPi partitioned as

PT
i V T

i UiPi = [W+
i W−

i ]

[
In+

i
0

0 −In−
i

]
[W+

i W−
i ]T ,(39)
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where Is denotes the s × s identity matrix and n+i + n−
i = ni. Then the columns of

ViPiW
+
i (resp., ViPiW

−
i ) form an orthonormal basis of the invariant subspace of A

corresponding to the positive (resp., negative) eigenvalues whose absolute values are
in Σi.

Proof. Without loss of generality, we may consider the SVD of A partitioned in
only two blocks,

A = [U1 U2]

[
Σ1 0
0 Σ2

]
[V1 V2]

T ,(40)

where no special order is assumed on the singular values. Here Σ1 corresponds to the
cluster Σi to be studied and Σ2 corresponds to the remaining clusters Σī defined as
in (31). The matrix Pi will be denoted just by P , and the matrices W±

i in (39) will
be denoted by W±.

As mentioned in section 3.2, V T
1 U1 is orthogonal, symmetric, and block-diagonal

with the size of the blocks fixed by the groups of equal singular values inside Σ1. The
matrix V T

1 U1Σ1 is also symmetric with the same block-diagonal structure of V T
1 U1.

An orthogonal diagonalization for each block of V T
1 U1 leads to an orthogonal diag-

onalization of the full matrix V T
1 U1 with eigenvectors which are also eigenvectors of

V T
1 U1Σ1. In this situation, the eigenvectors of V T

1 U1 corresponding to the eigen-
value 1 (resp., −1) are the eigenvectors of V T

1 U1Σ1 corresponding to positive (resp.,
negative) eigenvalues with absolute values in Σ1. From this we deduce that the in-
variant subspaces corresponding to positive (resp., negative) eigenvalues of matrices
PTV T

1 U1P and PTV T
1 U1Σ1P coincide. Once this is taken into account, the rest of

the proof reduces to some easy block manipulations.
Combining (40) and V T

2 U1 = 0 from (25), we obtain

AV1P = U1Σ1P = [V1 V2]

[
V T
1

V T
2

]
U1Σ1P = V1P (P

TV T
1 U1Σ1P ).(41)

Splitting the spectrum into positive and negative eigenvalues, we orthogonally diago-
nalize

PTV T
1 U1Σ1P = [Q+ Q−]

[
D+ 0
0 D−

]
[Q+ Q−]T ,

and from (41) we obtain

A(V1PQ+ ) = (V1PQ+ )D+ and A(V1PQ− ) = (V1PQ− )D−.(42)

Now, we know that col(Q±) = col(W±), and since the columns of Q± and W± are
orthonormal, there exist square orthogonal matrices T± such that W± = Q±T±.
Combining this and (42) we obtain

A(V1PW± ) = (V1PW± ) (TT
±D±T± ),

which proves the theorem.
Once the previous theorem is proved, the rest of the section is organized into the

following three steps.
1. Although Lemma 4.1 guarantees that Ûi and V̂i are close to UiPi and ViPi,

provided the clusters have been properly chosen, this does not mean that ∆̂i =



AN ORTHOGONAL HIGH ACCURACY EIGENVALUE ALGORITHM 321

fl(V̂ T
i Ûi) in step 11 of Algorithm 2.2 is symmetric. Let Ŝi be the symmetric ma-

trix obtained by replacing the upper triangular part of ∆̂i with its lower triangular
part. Lemma 4.5 bounds the difference between Ŝi and the exact symmetric matrix
PT

i V T
i UiPi. Notice that if any driver routine of LAPACK [1] for the symmetric eigen-

value problem is used in step 12 of Algorithm 2.2, just the upper (or lower) triangular

part of ∆̂i is stored. Hence, the symmetrization step does not require any additional
work.

2. Lemma 4.6 relates the computed orthogonal eigendecomposition of Ŝi with
an exact eigendecomposition of PT

i V T
i UiPi. It is shown that exact matrices W±

i in

(39) can be chosen close enough to the corresponding computed matrices Ŵ±
i in step

12 of Algorithm 2.2.
3. Finally, the main theorem, Theorem 4.7, bounds the difference between the

n×n±
i matrices fl(V̂iŴ

±
i ) computed in step 13 of Algorithm 2.2 and some orthonor-

mal bases of exact invariant subspaces of A. This result is a simple consequence of
Lemmas 4.1 and 4.6.

The bottom line after these three steps is that step 3 of Algorithm 1 produces
errors of the order ofKi, the quantity defined in (32), whose upper bound (32) depends
only on the errors in steps 1 and 2 of Algorithm 1.

Lemma 4.5. Let Ûi, V̂i ∈ R
n×ni be the matrices of computed left and right sin-

gular vectors corresponding to the cluster of singular values Σ̂i computed by steps 1–2
of Algorithm 1 applied to the symmetric matrix A. Let Ui, Vi, Σi be their exact coun-
terparts. Let Ŝi be a symmetrization of the floating point matrix ∆̂i = fl( V̂ T

i Ûi )

obtained by replacing the upper triangular part of ∆̂i with its lower triangular part,
or vice versa. Then an orthogonal ni × ni matrix Pi exists such that

‖Ŝi − PT
i V T

i UiPi‖F ≤ 2Ki +
K2

i√
2
+O(ε)

≤ O(εκ(R′)max(κ(X), κ(Y )))

relgap(Σi, Σ̂ī)
.(43)

Proof. First observe that

‖fl( V̂ T
i Ûi )− PT

i V T
i UiPi‖F ≤ ‖fl( V̂ T

i Ûi )− V̂ T
i Ûi‖F + ‖V̂ T

i Ûi − PT
i V T

i UiPi‖F ,

where Pi is the orthogonal matrix appearing in Lemma 4.1. Standard error analysis
of usual matrix multiplication [18], and the fact that the columns of Ûi and V̂i are
almost orthonormal by (12), show that the first term in the right hand-side of the
previous inequality is bounded by nniε+O(ε2). The last term can be bounded as in
the proof of Lemma 4.2, so we obtain

‖fl( V̂ T
i Ûi )− PT

i V T
i UiPi‖F ≤

(√
2Ki +

K2
i

2

)
+O(ε).

We write fl( V̂ T
i Ûi ) = L̂ + D̂ + R̂ as the sum of its strict lower triangular part, its

diagonal part, and its strict upper triangular part. The same is done for the symmetric
matrix PT

i V T
i UiPi = L+D + LT , so the previous equation yields√
‖(L̂+ D̂)− (L+D)‖2F + ‖R̂− LT ‖2F ≤

(√
2Ki +

K2
i

2

)
+O(ε).(44)
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The same inequality holds for
√

‖L̂− L‖2F + ‖D̂ + R̂− (D + LT )‖2F . On the other

hand

‖Ŝi − PT
i V T

i UiPi‖F =

√
‖(L̂+ D̂)− (L+D)‖2F + ‖L̂T − LT ‖2F .

Combining this equation with (44) proves the lemma.
Errors in the diagonalization step, step 12, of Algorithm 2.2 are now analyzed.

Notation and definitions of the previous lemma are used.
Lemma 4.6. Let ŴiΛ̂iŴ

T
i be the computed orthogonal spectral decomposition

of the symmetric ni × ni matrix Ŝi using any LAPACK subroutine for the symmetric
eigenproblem [1, section 2.3.4.1]. Then, there exists a matrix Ei, an orthogonal matrix
Zi, and an orthogonal matrix Pi such that

PT
i V T

i UiPi + Ei = ZiΛ̂iZ
T
i ,(45)

where

‖Zi − Ŵi‖2 ≤ O(ε) and ‖Ei‖F ≤ 2Ki +
K2

i√
2
+O(ε).(46)

Moreover, if Ŵ+
i (resp., Ŵ−

i ) is the submatrix of Ŵi with columns corresponding

to the positive (resp., negative) elements of Λ̂i, then there exist matrices W+
i ,W−

i

fulfilling (39) such that

‖Ŵ±
i −W±

i ‖F ≤ 2
√
2Ki +K2

i +O(ε)

=
O(εκ(R′)max(κ(X), κ(Y )))

relgap(Σi, Σ̂ī)
.(47)

Proof. Using the results in [1, section 4.7.1] we see that there exist an orthogonal
matrix Zi and a matrix E′

i such that

Ŝi + E′
i = ZiΛ̂iZ

T
i ,(48)

where

‖Zi − Ŵi‖2 ≤ O(ε) and ‖E′
i‖2 ≤ O(ε)‖Ŝi‖2.

Let Pi be the orthogonal matrix appearing in Lemmas 4.1 and 4.5. The spectral norm
of the orthogonal matrix PT

i V T
i UiPi is equal to one, so (43) implies ‖Ŝi‖2 = 1 + β,

with |β| ≤ 2Ki +K2
i /

√
2+O(ε). Thus ‖E′

i‖2 = O(ε). Now, expressions (45) and (46)
are easily proved using Lemma 4.5, noting by (48) that

PT
i V T

i UiPi + Ŝi − PT
i V T

i UiPi + E′
i = ZiΛ̂iZ

T
i ,

and defining

Ei = Ŝi − PT
i V T

i UiPi + E′
i.

We finally prove (47). Let W±
i be matrices fulfilling (39) and Z+

i (resp., Z−
i )

be a submatrix of Zi corresponding to the positive (resp., negative) elements of Λ̂i.
We assume that Ki is small enough to imply ‖Ei‖2 < 1, so the eigenvalues equal
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to 1 (resp., −1) of PT
i V T

i UiPi remain positive (resp., negative) in Λ̂i. This can be
seen by applying Weyl’s eigenvalue perturbation theorem to (45) (see, for instance,
[25, Corollary IV.4.10]). Thus, Davis and Kahan’s sinΘ theorem for variations of
invariant subspaces of Hermitian matrices [4] applied to (45) leads to

‖ sinΘ(W+
i , Z+

i )‖F ≤ ‖Ei‖F

min
µ<0

µ∈Λ̂i

|1− µ| ≤ ‖Ei‖F ,(49)

where the matrix Θ(W+
i , Z+

i ) is the matrix of the canonical angles between the column
space of W+

i and the column space of Z+
i . Theorem II.4.11 in [25], (49), and (46)

show that it is possible to choose W+
i such that

‖W+
i − Z+

i ‖F =
√
‖ sinΘ(W+

i , Z+
i )‖2F + ‖I − cosΘ(W+

i , Z+
i )‖2F

≤
√
2 ‖ sinΘ(W+

i , Z+
i )‖F

≤
√
2 ‖Ei‖F

≤ 2
√
2Ki +K2

i +O(ε).(50)

Similar results hold for W−
i and Z−

i . We finish the proof by noting that

‖Ŵ±
i −W±

i ‖F ≤ ‖Ŵ±
i − Z±

i ‖F + ‖Z±
i −W±

i ‖F .

The first term of the right-hand side is O(ε) by (46), and the second one is bounded
in (50).

We conclude with the main result on rounding errors for eigenvectors computed
in step 13 of Algorithm 2.2. Previous notation and definitions are used.

Theorem 4.7. Let A be an n×n real symmetric matrix of rank r for which it is
possible to compute an RRD fulfilling (10). Let Σ̂i be a cluster of nonzero computed
singular values of A using steps 1–2 of Algorithm 1 and Σi be the corresponding cluster
of exact singular values. Then there exist matrices Q+

i and Q−
i , whose columns form

orthonormal bases of the invariant subspaces of A corresponding, respectively, to the
positive and negative eigenvalues of A with absolute values in Σi, such that

‖fl( V̂iŴ
+
i )−Q+

i ‖F ≤ (2
√
2 + 1)(Ki +K2

i ) +K3
i +O(ε)

=
O(εκ(R′)max(κ(X), κ(Y )))

relgap(Σi, Σ̂ī)
,(51)

with an equal bound for ‖fl( V̂iŴ
−
i )−Q−

i ‖F .

Moreover, let Q̂ = [fl( V̂1Ŵ
+
1 ) fl( V̂1Ŵ

−
1 ) . . . fl( V̂kŴ

+
k ) fl( V̂kŴ

−
k )] be the n×r

matrix whose columns are the bases of all considered invariant subspaces of A com-
puted using Algorithm 1. Then there exists an n× r matrix B with exact orthonormal
columns such that

‖Q̂−B‖F = O(ε).(52)

Proof. Let V̂i be the matrix of computed right singular vectors corresponding
to the cluster Σ̂i, and let Vi be its exact counterpart. Let W±

i , Ŵ±
i , and Pi be

the matrices appearing in Lemmas 4.6 and 4.1. By Theorem 4.4, the columns of
Q+

i ≡ ViPiW
+
i and Q−

i ≡ ViPiW
−
i are orthonormal bases of the invariant subspaces
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of A corresponding, respectively, to the positive and negative eigenvalues of A with
absolute values in Σi.

Note also that

‖fl( V̂iŴ
±
i )− ViPiW

±
i ‖F ≤ ‖fl( V̂iŴ

±
i )− V̂iŴ

±
i ‖F + ‖V̂iŴ

±
i − ViPiW

±
i ‖F .(53)

The first term of the right-hand side is bounded by ni

√
ni n

±
i ε+O(ε2) using the stan-

dard error analysis of usual matrix multiplication [18] and the fact that the columns

of V̂i and Ŵ±
i are almost orthonormal by (12) and (46). For the second term we

proceed as follows: Define matrices ∆v and ∆±
w by

V̂i = ViPi +∆v and Ŵ±
i = W±

i +∆±
w ,

where ‖∆v‖F ≤ Ki by (32) and ‖∆±
w‖F ≤ 2

√
2Ki +K2

i +O(ε) by (47). Thus

‖V̂iŴ
±
i − ViPiW

±
i ‖F ≤ ‖∆v‖F + ‖∆±

w‖F + ‖∆v‖F ‖∆±
w‖F

≤ (2
√
2 + 1)(Ki +K2

i ) +K3
i +O(ε).

Combining this with (53) proves (51).
Finally, (52) follows from the well-known fact that finite precision matrix mul-

tiplication of matrices with columns orthonormal up to O(ε) yields a matrix with
columns orthonormal up to O(ε).

As announced in the introduction, the eigenvector error bounds we derive suffer
from an important drawback: they depend on relgap (23) between singular values,
which is less than or equal to the natural relative gap between eigenvalues, the one
expected for the symmetric eigenproblem. This is an unavoidable consequence of the
nonsymmetric character of Algorithm 1. This drawback, however, can be partially
solved applying Theorem 4.7 to certain new singular value clusters chosen as described
in section 5.

It is worth observing that Theorem 4.7 does not guarantee that the columns of
the matrices fl(V̂iŴ

±
i ) computed by Algorithm 1 approximate eigenvectors of A.

This can only be ensured in three cases: when there is no cluster (ni = 1), when all
eigenvalues in the cluster have the same sign, and when the cluster contains eigenval-
ues of both signs with either n+i = 1 or n−

i = 1. In this last case, either fl(V̂iŴ
+
i )

or fl(V̂iŴ
−
i ) approximates an eigenvector of A. In any other situation, the columns

of fl(V̂iŴ
±
i ) do not approximate eigenvectors but just orthonormal bases of the

invariant subspaces of A corresponding to either the positive or the negative eigen-
values with absolute values in the cluster. However, provided the clusters of singular
values are chosen according to criterion (29), this does not represent any drawback,
because the eigenvectors in the corresponding invariant subspaces are computed by
any symmetric eigensolver (including the J-orthogonal algorithm [26, 22]) with large
errors due to the presence of very small relative gaps between the eigenvalues inside
the clusters. There is no need to say that the J-orthogonal algorithm also computes
accurate bases of invariant subspaces, due to its backward stability.

We conclude with an interesting remark concerning the discussion in the previous
paragraph. Consider, for simplicity, that according to criterion (29) a cluster of two
singular values, one corresponding to a positive eigenvalue and the other to a negative
one, has been found. Then the bound in Theorem 4.7 implies that Algorithm 1
computes both eigenvectors with an error governed by the relative gap between the
cluster and the singular values outside the cluster. This can be much larger than
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the relative gap between the singular values inside the cluster. Thus, the presence of
clusters reduces the errors in the computed eigenvectors. We will take more advantage
of this property in section 5.

5. Computing more accurate eigenvectors. The error in the eigenvectors
computed by Algorithm 2 is governed (see Theorem 4.7) by the singular value relative
gap, which is less than or equal to the natural eigenvalue relative gap. We present in
this section Algorithm 3, an implementation of step 3 of Algorithm 1, which computes
eigenvectors with the error (2) (see also (4) and (5)) announced in the introduction.
As we will see, the underlying idea is very simple and does not require a new error
analysis but simply takes advantage of the generality of the one performed in section
4. We stress that the eigenvalue computation (steps 1–2 in Algorithm 2) will stay the
same; only the computation of the eigenvectors will be modified. The general case,
when clusters of singular values of arbitrary dimension are present, will be considered.

First, note that Algorithm2 computes the eigenvalues before computing the eigen-
vectors. The relative error in the eigenvalues is of order O(εκ(R′)max(κ(X), κ(Y )))
provided the clusters are chosen according to criterion (29). A second important
remark is that the error analysis performed in section 4 for the eigenvectors is inde-
pendent of the error analysis for the eigenvalues, both being valid under the hypothesis
that the quantities Ki defined in (32) are sufficiently small. As Lemma 4.1 shows, this

is achieved by defining clusters which yield large enough relgap(Σi, Σ̂ī), but whenever
this condition is fulfilled different clusters, i.e., different Ki, can be chosen to compute
the eigenvectors using Algorithm 2.2. Theorem 4.7 still applies and will provide a
smaller error bound whenever the new clusters for the eigenvector computation have
larger relgaps than the ones chosen according to (29). Consequently we present the
following algorithm that is the final version of step 3 of Algorithm 1.

Algorithm 3.
Input: SVD of a symmetric matrix A = UΣV T.

Output: EigenvaluesΛ=diag[λi] and eigenvectorsQ=[q1 . . . qn];A = QΛQT.

1. Decide the singular value clusters, {Σi, Ui, Vi}k
i=1, according

to (29).

2. Compute the eigenvalues using Algorithm 2.1.

3. Use Algorithm 3.1 in section 5.2 to merge, when necessary, some

pairs of clusters to form a new set {Σi, Ui, Vi}q
i=1 of clusters,

according to the strategy developed in this section.

4. Compute the eigenvectors using Algorithm 2.2 on the new set of

clusters.

The difference with respect to Algorithm2 is the presence of step 3, in which a new
selection of clusters is made. The limit for improving the bound (51) in Theorem4.7 by

increasing relgap(Σi, Σ̂ī) is naturally the eigenvalue relative gap. With this in mind,
the idea to be implemented is very simple: Let Σi be one of the singular value clusters
chosen according to (29), and let Λ+

i (resp., Λ−
i ) be the corresponding clusters of

positive (resp., negative) eigenvalues with absolute values in Σi. Then relgap(Σi, Σ̂ī)
can be much worse than the minimum of the two eigenvalue relative gaps associated
to Σi only in the case in which Σi is signed (all the eigenvalues of the same sign), and
the closest (in the relative sense) cluster to Σi, let us say Σcl(i), is oppositely signed.

Without loss of generality, it can be assumed that Σi = Λ+
i ; therefore Σcl(i) = −Λ−

cl(i).

If Σi and Σcl(i) are joined to form a new cluster Λ+
i ∪ (−Λ−

cl(i)) with a larger relgap,

the bound (51) will improve separately for the bases of exactly the same two invariant
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subspaces associated with Λ+
i and Λ−

cl(i), computed by Algorithm 2.2 applied to the

new set of clusters. Therefore, nothing is lost by merging clusters of this kind, and
the error bound (51) can improve by joining close adjacent clusters in such a way that
relgap increases.

It will be seen that in the other cases it is not necessary to join clusters, either
because the singular value relative gap is already of the same order of the eigenvalue
relative gap, or because joining clusters would mean increasing the number of eigen-
values of the same sign in the cluster, and consequently Algorithm 2.2 would compute
bases of a larger invariant subspace, thus losing all the information about the original
invariant subspaces.

The error bound for the eigenvectors computed by Algorithm 3 is given by (51)
applied to the new set of clusters chosen in step 3. The formula (2) for individual
eigenvectors follows easily from (51). The argument is as follows: Consider an in-
dividual eigenvalue λi, positive without loss of generality, belonging to a cluster Σk

(chosen in step 3 of Algorithm 3). If λi is not the only positive eigenvalue in Σk,
then (2) follows inmediately. If λi is the only positive eigenvalue in Σk and there are
other negative eigenvalues in the cluster, then (2) follows because in Theorem 4.7 the
bounds for the bases associated to positive and negative eigenvalues are independent
of the relative gaps between the singular values inside Σk. The only remaining case
is the one in which Σk = {λi}, i.e., the eigenvalue is by itself a cluster. If its closest
cluster has not been joined to Σk by step 3 of Algorithm 3, it is either because it
contains positive eigenvalues or because merging the two clusters would not improve
the singular value relative gap. In any case, removing the closest (in absolute value)
negative eigenvalues changes the singular value relative gap at most by a moderate
factor. Therefore, (2) also holds in this case.

We will also relate our sharpest bound (51) with the eigenvalue relative gap. More
precisely, we will show in this section that Algorithm 3 guarantees that the error in the
computed basis of the invariant subspace corresponding to each cluster of eigenvalues
Λ̂i of the symmetric matrix A is smaller than

O(εκ(R′)max(κ(X), κ(Y )))

min{relgap(Λ̂i), relgap(Λ̂cl(i))}
,(54)

where the eigenvalue relative gap in the denominator corresponds to either the cluster
Λ̂i under consideration or the cluster Λ̂cl(i) whose eigenvalues have different sign but
are the closest (in relative sense) in absolute value. This result will be proved in
Theorem 5.12 and generalizes to invariant subspaces the error bound (4), (5) appearing
in the introduction for eigenvectors.

The rest of this section is organized as follows: Some relationships between eigen-
value and singular value relative gaps are proved in section 5.1. This is necessary if
(54) has to be proved using Theorem 4.7, which only deals with singular value relative
gaps. First we show in Theorem 5.5 that in the case of an unsigned cluster (a cluster
containing singular values corresponding to positive and negative eigenvalues), the
singular value relative gap of the cluster is not worse, up to a moderate constant,
than an eigenvalue relative gap. Theorem 5.6 proves that this also happens to the
relative gap of a signed cluster if the closest cluster is not signed of the opposite sign.
Thus for clusters of these two kinds (54) holds, and it is not necessary to join them
to any other cluster.
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In the rest of section 5.1 we will study the case of a signed cluster whose closest
cluster is oppositely signed. In all the theorems it will be assumed that the singular
value relative gap is sufficiently smaller than the eigenvalue relative gap; otherwise it
is trivial that (54) is reached. With these assumptions (54) is always achieved, either
by joining clusters if the singular value relative gap improves (Theorem 5.7), or if not,
by doing nothing (Theorem 5.9). Finally, Theorem 5.10 proves that it is not necessary
to join more than two clusters. Let us remark that the only case in which Algorithm 2
has to be modified to get (54) is when the hypotheses of Theorem 5.7 are satisfied.

In subsection 5.2 we implement a routine, Algorithm 3.1, that merges pairs of
adjacent singular value clusters, previously chosen according to (29), whenever the
following conditions are met: (a) both clusters are signed with opposite sign, (b) the
singular value relative gap is sufficiently smaller than the eigenvalue relative gap, and
(c) the singular value relative gap increases after merging the two clusters. Algorithm
2.2 is then applied to these new clusters and Theorem 5.12 proves that (54) is achieved
for the computed bases of the invariant subspaces.

Here, as in section 4, only clusters of nonzero singular values will be considered.
Apart from the reasons stated in section 4, it should be remarked that a cluster of zero
singular values is at the same time a cluster of zero eigenvalues, and both its eigenvalue
and singular value relative gaps are equal to 1. Thus for such a cluster an error bound
O(εκ(R′)max(κ(X), κ(Y ))) holds, and this cannot be improved. Moreover, a cluster
of zero singular values is as far as possible, in relative distance, from any other cluster,
thus joining it to another cluster makes no sense.

5.1. Eigenvalue versus singular value relative gaps. Throughout this sec-
tion we consider a set of real numbers Λ = {λ1, . . . , λn} decreasingly ordered, i.e.,
λ1 ≥ · · · ≥ λn, and the set of their moduli, Σ = {σ1, . . . , σn}, also in decreasing or-
der, i.e., σ1 ≥ · · · ≥ σn ≥ 0. Let Π be the index permutation such that σi = |λΠ(i)|.
Whenever we consider a subset Σ1 = {σi+1, σi+2, . . . , σi+d1} of Σ we will denote by
Λ1 = {λΠ(i+1), . . . , λΠ(i+d1)} the corresponding subset of Λ; moreover, we will call

Λ+
1 (resp., Λ−

1 ) the set of positive (resp., negative) elements of Λ1. It is worth think-
ing of Λ and Σ as being, respectively, the set of eigenvalues and singular values of
the real symmetric matrix A studied in section 4, but notice that the results in this
subsection are proved using only elementary properties of real numbers, without any
reference to spectral properties. Thus, the proofs of the theorems in this subsection
are all elementary but sometimes long and involved, mainly due to dealing with clus-
ters containing more than one element. This is why most of the proofs have been
omitted. The proof of Theorem 5.7, one of the more intricate results in the section, is
included in a final appendix, in order to give an idea of the techniques employed. The
remaining proofs are similar, and those of a nonelementary character may be found
in [10, Appendix B].

Our definitions of relative gaps (see (3) and (9)) are convenient and appealing
in numerical analysis, but the lack of symmetry in relative errors of the type |σj −
σi|/σi is unpleasant from a mathematical point of view and complicates somewhat the
statement of the results (see more on these questions and definitions of true relative
mathematical distances in [19, 20]). In this sense, an effort has been made to state
the theorems in such a way that they can be directly applied to the clusters chosen
by Algorithm 3.1.

We begin with a general definition of cluster.
Definition 5.1. Let Cl be a real number such that 0 ≤ Cl < 1. The subset

Σ1 = {σi+1, σi+2, . . . , σi+d1
} of Σ is called a cluster of tolerance Cl if
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1. (σj − σj+1) ≤ Cl σj for j = i+ 1, . . . , i+ d1 − 1,

2. (σi − σi+1) > Cl σi and (σi+d1 − σi+d1+1) > Cl σi+d1 , whenever all the
indices belong to {1, 2, . . . , n}; otherwise the corresponding inequality does not appear
in the definition.

Notice that in the case of a cluster of dimension 1 (d1 = 1) the first condition is
empty. Notice also that this definition includes the clusters of singular values chosen
in Algorithm 2, according to criterion (29), for Cl = εκ(R′)max{κ(X), κ(Y )}. The
condition Cl < 1 appearing in Definition 5.1 is necessary—otherwise the whole set Σ
would always be a trivial cluster, independently of the distribution of its elements.

Now we define relative gaps for subsets of Λ and Σ. For the sake of simplicity we
will use only one argument.

Definition 5.2. Let Λ2 and Σ1 be any subsets of, respectively, Λ and Σ. We
define the following relative gaps for both subsets:

1.

rg(Λ2) = min
λk∈Λ2

λq /∈Λ2

|λq − λk|
|λk| .

2.

relgap(Λ2) = min{rg(Λ2) , 1}.
3.

rg(Σ1) = min
σk∈Σ1

σq /∈Σ1

|σq − σk|
σk

.

4.

relgap(Σ1) = min{rg(Σ1) , 1}.
Given a subset Σ1 of Σ, the relationship between the relgap(Σ1) appearing in

Definition 5.2 and relgap as defined by (23) and (21) is

relgap(Σ1) = relgap(Σ1̄,Σ1),(55)

where the notation introduced in (31) has been used. Similar comments apply to rg
defined in (21) and rg defined above. Although relgap(Σ1,Σ1̄) is the relative gap
appearing in the error analysis of section 4, we have found it simpler, from both
theoretical and computational points of view, to deal with relgap(Σi), which has the
elements of the cluster being analyzed in the denominators of the relative errors.6

Both choices are equivalent, as shown in (24) and, on the other hand, it is possible to
reformulate Theorem 2.3 using relgap(Σi).

The error bounds for invariant subspaces computed using the J-orthogonal al-
gorithm and Algorithm 1 are controlled by the relative gaps relgap, of eigenvalues
and singular values, respectively, in the previous definition (see Theorem 4.7 and [22,
p. 7]). However, in the following it is simpler and more general to use the relative
gaps rg. At the end of this section it will be shown that theorems obtained for rg
easily imply results for relgap.

6Notice that notation similar to Definition 5.2 has already been used in the introduction (see (3)
and (9)).
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We start with this simple lemma.
Lemma 5.3. Let Σ1 = {σi+1, σi+2, . . . , σi+d1} be a subset of consecutive elements

of Σ. Then

rg(Σ1) = min

{
σi − σi+1

σi+1
,
σi+d1

− σi+d1+1

σi+d1

}
,

where if the index i or i+d1+1 does not belong to {1, . . . , n} the corresponding term
does not appear in the minimum.

This lemma allows a natural definition of the closest cluster to Σ1 in the relative
sense.

Definition 5.4. Let Σ1 = {σi+1, σi+2, . . . , σi+d1} be a cluster of tolerance Cl.
We define its relative closest cluster Σcl(1) as the cluster of tolerance Cl containing
σi if rg(Σ1) = (σi − σi+1)/σi+1, or the one containing σi+d1+1 if rg(Σ1) = (σi+d1 −
σi+d1+1)/σi+d1 .

It is seen from Lemma 5.3 that, with the possible exception of the cluster contain-
ing the smallest singular value, rg(Σ1) ≤ 1 and then rg(Σ1) = relgap(Σ1). Obviously
the last equality also holds whenever rg(Σ1) < 1, a condition appearing frequently in
the results of this section.

Our first result deals with the case of clusters containing singular values corre-
sponding to positive and negative eigenvalues. This theorem shows that in this case
the singular value relative gap of the cluster is not worse, up to a moderate constant,
than an eigenvalue relative gap. Thus for clusters of singular values of this kind (54)
holds, and it is not necessary to join them to any other cluster.

Theorem 5.5. Let Σ1 be a cluster of singular values of tolerance Cl with d1
elements such that (d1 − 1)Cl < 1, and assume that Λ1 contains both positive and
negative elements. Then

min{rg(Λ+
1 ) , rg(Λ

−
1 )} ≤ 1

1− (d1 − 1)Cl

(
1 +

(d1 − 1)Cl

rg(Σ1)

)
rg(Σ1).

Some remarks about the bound in the previous theorem are in order: the assump-
tion (d1 − 1)Cl < 1 is fulfilled for clusters of any size if we demand Cl < 1/n; this
is really very mild because the clusters are chosen in practice according to (29) with
C = 1, i.e., Cl = εκ(R′)max(κ(X), κ(Y )), which is smaller than 1/n for moderate
values of max(κ(X), κ(Y )). This has led us to set in the numerical experiments

Cl = min{εκ(R′)max(κ(X), κ(Y )), 1/n}.(56)

With this choice the factor 1/(1 − (d1 − 1)Cl) is always less than n, but it is just
a little greater than 1 when Cl ≈ ε. The presence of the ratio Cl/rg(Σ1) may look
odd because we are bounding precisely the quotient min{rg(Λ+

1 ) , rg(Λ
−
1 )}/rg(Σ1);

however, notice that Definition 5.1 and Lemma 5.3 imply

Cl < rg(Σ1) and Cl < relgap(Σ1).(57)

The ratio Cl/rg(Σ1) is kept in the bound because Cl � rg(Σ1) may often happen. It
is convenient to bear in mind that these remarks also hold for the bounds appearing
in the next theorems of this section. Notice also that all bounds are greatly simplified
in the case of one-dimensional clusters.

Now we consider a signed cluster whose relative closest cluster has at least one
singular value corresponding to an eigenvalue with the same sign. In this situation, the
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next theorem shows that the singular value relative gap is equivalent to the eigenvalue
relative gap up to a moderate constant.

Theorem 5.6. Let Σ1 be a cluster of singular values and Σ2 its relative closest
cluster having d2 elements, both of tolerance Cl. Let all the elements of Λ1 have
the same sign and at least one element of Λ2 have the same sign as those of Λ1. If
(d2 − 1)Cl < 1, then

rg(Λ1) ≤
(
1 +

2

1− (d2 − 1)Cl

(d2 − 1)Cl

relgap(Σ1)

)
rg(Σ1).

Theorems 5.5 and 5.6 guarantee that, in order to obtain (54) for all the singular
value clusters, we need only deal with signed clusters whose relative closest cluster is
oppositely signed. This will be the setting for the rest of the section. The following
theorem proves that under mild conditions joining clusters of this kind leads to (54).

Theorem 5.7. Let Σ1 be a cluster of d1 elements and Σ2 its relative closest
cluster, having d2 elements, both of tolerance Cl. Suppose that all the elements of
Λ1 have the same sign and all the elements of Λ2 have the opposite sign. Moreover,
assume that (d− 1)Cl < 1, where d = max{d1, d2}. If rg(Σ1) < t < 1 and

rg(Σ1 ∪ Σ2) > min{rg(Σ1), rg(Σ2)},(58)

then

min{rg(Λ1) , rg(Λ2)}
≤ 1

1− t

(
1 +

1

1− (d− 1)Cl
+

1

1− (d− 1)Cl

(d− 1)Cl

rg(Σ1 ∪ Σ2)

)
rg(Σ1 ∪ Σ2).

The assumption rg(Σ1) < t < 1 means that only singular value clusters whose
relative gaps are small enough need to be joined to other clusters in order to ob-
tain (54). In practice we have set t = relgap(Λ1)/2. Therefore, if rg(Σ1) ≥ t, the
bound in Theorem 4.7 leads trivially to (54). The assumption (58), rg(Σ1 ∪ Σ2) >
min{rg(Σ1), rg(Σ2)}, is imposed to guarantee that by joining clusters Σ1 and Σ2 when
computing bases of invariant subspaces some improvement is achieved in the bound in
Theorem4.7. In this regard one may wonder what happens with max{rg(Σ1), rg(Σ2)};
i.e., how much can the bound (51) worsen for the cluster with the maximum relative
gap when Σ1 and Σ2 are joined? The next lemma shows that no significant worsening
may occur.

Lemma 5.8. If both (58) and rg{Σ1} < t < 1 are fulfilled, then

max{rg(Σ1), rg(Σ2)} <
rg(Σ1 ∪ Σ2)

1− t
.

Notice that the difference between the maximum and the minimum values of
{rg(Σ1), rg(Σ2)} is in this case again a consequence of the lack of symmetry of the
relative error.

In order to obtain (54) for all the clusters, we have to prove that if Σ1 and its
relative closest cluster Σ2, defined as in Theorem 5.7, do not fulfill (58), they will not
be joined because Σ1 has a singular value relative gap not worse, up to a moderate
constant, than either its eigenvalue relative gap or the eigenvalue relative gap of Σ2.
Proving this is the goal of the next theorem.
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Theorem 5.9. Let Σ1 be a cluster of d1 elements and Σ2 its relative closest
cluster, having d2 elements, both of tolerance Cl. Suppose that all the elements of
Λ1 have the same sign and all the elements of Λ2 have the opposite sign. Moreover,
assume that (d− 1)Cl < 1, where d = max{d1, d2}. If rg(Σ1) < t < 1 and

rg(Σ1 ∪ Σ2) = min{rg(Σ1), rg(Σ2)},(59)

then

min{rg(Λ1) , rg(Λ2)}
≤ 1

1− t

(
1 +

1

1− (d− 1)Cl
+

1

1− (d− 1)Cl

(d− 1)Cl

rg(Σ1)

)
rg(Σ1).

Observe that hypothesis (59) is simply the negation of (58) because we always
have rg(Σ1 ∪ Σ2) ≥ min{rg(Σ1), rg(Σ2)}.

Although similar, the bounds appearing in Theorems 5.7 and 5.9 are different
in the following sense. While in Theorem 5.7 min{rg(Λ1) , rg(Λ2)} ≈ rg(Σ1 ∪ Σ2)
always holds, in Theorem 5.9 min{rg(Λ1) , rg(Λ2)} � rg(Σ1) might occur. Thus the
error bounds obtained by replacing in (51) rg(Σ1) with min{rg(Λ1) , rg(Λ2)} may be
pessimistic in the conditions of Theorem 5.9.

Our last result shows that in order to obtain (54), unions of more than two clusters
are not necessary. In the following theorem three clusters are considered. Two of them
satisfy the assumptions of Theorem 5.7, and the third cluster may be a candidate for
joining the others. In this situation it will be proved that the relative singular value
gap for the third cluster is equivalent, up to a moderate constant, to its eigenvalue
relative gap.

Theorem 5.10. Let Σ1 and Σ2 be clusters satisfying the hypotheses of Theorem
5.7. Let Σ3 be another cluster, of tolerance Cl, with all the elements of Λ3 of the same
sign and rg(Σ3) < t3 < 1. If Σ1 (resp., Σ2) is the relative closest cluster to Σ3, and
all the elements of Λ3 have sign opposite to those of Λ1 (resp., Λ2), then

rg(Λ3) ≤
(
1 +

1

(1− t)(1− t3)

1

1− (d− 1)Cl
+

1 + t3
1− (d− 1)Cl

(d− 1)Cl

rg(Σ3)

)
rg(Σ3).

As announced after Definition 5.2, all the bounds appearing in this section remain
true if every rg is replaced by the corresponding relgap. This is easily understood as
follows: the left-hand sides of the inequalities decrease if the rg’s are replaced by the
relgap’s, and the new left-hand sides are smaller than or equal to 1. The factors that
multiply the rg’s appearing in the right-hand sides are all greater than or equal to 1
and increase when quotients of the kind Cl/rg are replaced by Cl/relgap. Thus the
left-hand sides are bounded simultaneously by 1 and by some factor greater than or
equal to 1 times the corresponding rg. Then they are bounded by the factor times
the relgap. Also notice that for testing the assumptions in the results in this section,
it is equivalent to use rg’s or relgap’s. First, it is trivial to see that rg(Σ1) < t < 1 if
and only if relgap(Σ1) < t < 1. Second, in testing the condition (58), the following
elementary lemma holds.

Lemma 5.11. Let

Σ1 = {σi+1, σi+2, . . . , σi+d1}, Σ2 = {σi+d1+1, σi+d1+2, . . . , σi+d1+d2}

be any pair of consecutive clusters of nonzero singular values of tolerance Cl. Then
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1. rg(Σ1 ∪ Σ2) = min{rg(Σ1), rg(Σ2)} if and only if relgap(Σ1 ∪ Σ2) =
min{relgap(Σ1), relgap(Σ2)}.

2. rg(Σ1 ∪ Σ2) > min{rg(Σ1), rg(Σ2)} if and only if relgap(Σ1 ∪ Σ2) >
min{relgap(Σ1), relgap(Σ2)}.

The key to proving this simple lemma is that rg(Σ1) ≤ (σi+d1 −σi+d1+1)/σi+d1
<

1; thus the 1 appearing in the relgap’s does not play any role. Taking into ac-
count the facts that rg(Σ1 ∪ Σ2) ≥ min{rg(Σ1), rg(Σ2)} and relgap(Σ1 ∪ Σ2) ≥
min{relgap(Σ1), relgap(Σ2)}, statements 1 and 2 in the previous lemma are equiva-
lent.

The final consequence of this section is that in order to get (54) only clusters
fulfilling the hypotheses of Theorem 5.7 must be joined. Once a pair of clusters of
this kind are joined, they can be disregarded in any other union processes as shown
by Theorem 5.10. Otherwise, the rest of the results prove that union of clusters of
different kinds is not needed. In the next subsection the task of developing a routine
that selects and joins clusters according to this criterion will be undertaken.

5.2. Choosing a new set of clusters. Now we will present a routine for step
3 of Algorithm 3. Given a set of clusters as input, selected according to (29), a new
set of clusters will come out according to the logic of the theorems in section 5.1;
i.e., clusters will be joined only if the hypotheses of Theorem 5.7 are satisfied. All
clusters of singular values appearing in the following algorithm are assumed to contain
consecutive singular values. Moreover, we order the clusters {Σi} in such a way that
any singular value in Σi is smaller than any singular value in Σi−1.

Algorithm 3.1.
Input: EigenvaluesΛ; Clusters {Σi}k

i=1; tolgap: parameter smaller than 1.
Output: New set of clusters: {Σi}q

i=1 with q ≤ k.
Notation:Λi denotes the set of eigenvalues whose absolute values are

the elements of Σi.

1. q = k
2. for i=1:k

qrg(i) = relgap(Σi)
relgap(Λi)

if(λj > 0 ∀λj ∈ Σi) then

sign(Σi) = +1
elseif(λj < 0 ∀λj ∈ Σi)

sign(Σi) = −1
else

sign(Σi) = 0
qrg(i) = 2

endif

endfor

3. qrgmin = min1≤i≤q qrg(i) ≡ qrg(ic)
4. while qrgmin < tolgap

determine the relative closest7 cluster toΣic according to

Definition 5.4. Assume that it is Σic+1.

if (sign(Σic) ∗ sign(Σic+1) = −1) and

(relgap(Σic ∪ Σic+1) > min{relgap(Σic), relgap(Σic+1)}) then

q = q − 1
relgap(Σic) = relgap(Σic ∪ Σic+1)

7The same can be done if Σic−1 is the relative closest cluster to Σic .
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sign(Σic) = 0
Σic = Σic ∪ Σic+1

for j = ic + 1 : q
Σj = Σj+1

relgap(Σj) = relgap(Σj+1)
sign(Σj) = sign(Σj+1)

endfor

endif

qrg(ic) = 2
qrgmin = min1≤i≤q qrg(i) ≡ qrg(ic)

5. endwhile

In practice we have set tolgap = 1/2, but other values are admissible. This

choice leads to values t = (relgap(Λ̂i)/2) ≤ 1/2 for the parameters t appearing in
Theorems 5.7, 5.9, and 5.10.

For the new set of clusters selected by Algorithm 3.1, the error in the correspond-
ing bases of invariant subspaces computed by Algorithm 2.2 is given by Theorem 4.7
using the new singular value relative gaps, and these are the sharpest bounds we have
for Algorithm 3. Nevertheless, in the next theorem we will use the theorems in the
previous subsection to give an upper bound for the inverse of the new singular value
relative gaps in (51) in terms of inverses of the eigenvalue relative gaps. Therefore
this theorem gives a precise statement of (54).

Theorem 5.12. Let A be a n × n real symmetric matrix of rank r for which
it is possible to compute an RRD fulfilling (10). Let Σ̂ be the singular values of A

computed using steps 1–2 of Algorithm 1. Let Σ̂i, i = 1, . . . , q, be the set of clusters
of nonzero computed singular values of A selected by step 3 of Algorithm 3, Λ̂i =
Λ̂+

i ∪ Λ̂−
i , i = 1, . . . , q, the corresponding set of clusters of eigenvalues, and Q̂i =

[Q̂+
i Q̂−

i ], i = 1, . . . , q, the matrices computed by step 4 of Algorithm 3. Let Σi

(resp., Λi) , i = 1, . . . , q, be the corresponding clusters of exact singular values (resp.,
eigenvalues).

1. If neither Λ̂+
i nor Λ̂−

i are empty, then there exist matrices Q+
i and Q−

i ,
whose columns form orthonormal bases of the invariant subspaces of A corresponding,
respectively, to the positive and negative eigenvalues of Λi, such that

‖Q̂+
i −Q+

i ‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

min{relgap(Λ̂+
i ), relgap(Λ̂

−
i )}

,(60)

with a similar bound for ‖Q̂−
i −Q−

i ‖F .

2. If all the elements of Λ̂i have the same sign and relgap(Σ̂i) ≥ tolgap ∗
relgap(Λ̂i), then there exists a matrix Qi, whose columns form an orthonormal basis
of the invariant subspace of A corresponding to the eigenvalues in Λi, such that

‖Q̂i −Qi‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

relgap(Λ̂i)
.(61)

3. If all elements of Λ̂i have the same sign, relgap(Σ̂i) < tolgap ∗ relgap(Λ̂i),

and the relative closest cluster Σ̂cl(i) to Σ̂i has all the corresponding eigenvalues with
the opposite sign, then there exists a matrix Qi, whose columns form an orthonormal
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basis of the invariant subspace of A corresponding to the eigenvalues in Λi, such that

‖Q̂i −Qi‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

min{relgap(Λ̂i), relgap(Λ̂cl(i))}
.(62)

4. If all elements of Λ̂i have the same sign, relgap(Σ̂i) < tolgap ∗ relgap(Λ̂i),

and the relative closest cluster to Σ̂i does not have all the corresponding eigenvalues
with the opposite sign, then there exists a matrix Qi, whose columns form an or-
thonormal basis of the invariant subspace of A corresponding to the eigenvalues in Λi,
such that

‖Q̂i −Qi‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

relgap(Λ̂i)
.(63)

Furthermore, let Q̂ = [Q̂+
1 Q̂−

1 . . . Q̂+
q Q̂−

q ] be the n × r matrix whose columns
are the bases of all considered invariant subspaces of A computed using step 4 of
Algorithm 3. Then there exists an n × r matrix B with exact orthonormal columns
such that

‖Q̂−B‖F = O(ε).(64)

Proof. The proof follows from Theorem 4.7 applied to the output clusters of
Algorithm 3.1 (step 3 of Algorithm 3) and the theorems on gaps in section 5.1 with
Cl = εκ(R′)max(κ(X), κ(Y )). As remarked after Theorem 5.10, relgap’s instead of
rg’s can be used in these theorems.

We begin by replacing relgap(Σi, Σ̂ī) with relgap(Σ̂ī,Σi) in the bound (51). This
does not significantly change the bound due to (24). Moreover, we assume that

relgap(Σ̂ī,Σi) ≈ relgap(Σ̂ī, Σ̂i). This is a fair assumption whenever steps 1–2 of
Algorithm 1 compute singular values with high relative accuracy. Thus (55) allows

us to apply (51), with relgap(Σi, Σ̂ī) replaced by relgap(Σ̂i), to the clusters selected
by Algorithm 3.1.

Consider a cluster Σ̂ic of singular values corresponding to the quantity qrgmin
in Algorithm 3.1. This cluster is joined to its relative closest cluster if and only if the
following three conditions are simultaneously fulfilled:

(c1) qrg(ic) =
relgap(Σ̂ic )

relgap(Λ̂ic )
< tolgap < 1.

(c2) sign(Σ̂cl(ic)) ∗ sign(Σ̂ic) = −1, where Σ̂cl(ic) is the closest cluster to Σ̂ic .

(c3) relgap(Σ̂ic ∪ Σ̂cl(ic)) > min{relgap(Σ̂ic), relgap(Σ̂cl(ic))}.
If all three conditions (c1), (c2), and (c3) are fulfilled, Algorithm 3.1 joins Σ̂ic

and Σ̂cl(ic) in a new output cluster Σ̂ic ∪ Σ̂cl(ic). In this case Theorem 5.7 applies with

t = tolgap ∗ relgap(Λ̂ic). This together with (51) yields (60) for the eigenvectors
corresponding to the new output cluster.

Now, suppose that at least one of the three conditions is not satisfied. Suppose
first that (c1) is satisfied, which implies sign(Σ̂ic) �= 0; otherwise qrgmin = 2. If (c2)

is not verified and the closest cluster to Σ̂ic is an input cluster, Theorem 5.6 can be
applied to the bound (51) to obtain (63); on the other hand, if (c2) is not verified
and the closest cluster is a new output cluster, (63) is achieved by using Theorem 5.6
or 5.10. If (c2) is verified and (c3) is also verified, we are in the previously studied
case of joining clusters. If (c2) is verified and (c3) is not verified, Theorem 5.9 can be
applied to (51) to yield (62).
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Suppose from now on that (c1) is not satisfied. Then, Algorithm 3.1 stops and
all the clusters existing at that moment verify

qrg(i) ≥ tolgap, i = 1, . . . , q.

If sign(Σ̂i) = 0, this is either because sign(Σ̂i) = 0 on input or because Σ̂i is a new
output cluster, i.e., union of two input clusters. Anyway, Theorem 5.5 or 5.7 leads
to (60) by using (51). If sign(Σ̂i) �= 0 and qrg(i) = 2, then Σ̂i already has been
analyzed inside the while loop and, according to the previous paragraph, either (62)

or (63) is satisfied. If sign(Σ̂i) �= 0 but tolgap ≤ relgap(Σ̂i)/relgap(Λ̂i) ≤ 1, then
(51) implies (61) at the cost of an additional factor 1/tolgap. With this, all the
possible cases on the decision tree for the conditions (c1), (c2), and (c3) have been
studied. The proof of (64) is as in Theorem 4.7.

We finish this section with two important remarks.
Remark 1. The eigenvalue clusters treated in the last theorem are exactly the

same as the ones corresponding to the singular value clusters chosen according to (29).
This is because Algorithm 3.1 only joins oppositely signed clusters and Algorithm 2.2
computes the bases separately.

Remark 2. The bounds in Theorem 5.12 have been obtained in two stages: first,
applying Theorem 4.7 to the new set of clusters produces a bound depending on sin-
gular value relative gaps. Then, this bound is majorized by other ones, depending
on certain eigenvalue relative gaps. This second stage never worsens significantly the
first bound, except in case 3 of Theorem 5.12. Thus, the bound (62) may be pes-

simistic, because the quantity min{relgap(Λ̂i), relgap(Λ̂cl(i))} might be much smaller

than relgap(Σ̂i). However, recall that the sharpest bound for Algorithm 3 is of the

order of εκ(R′)max(κ(X), κ(Y ))/relgap(Σ̂i).

6. Numerical experiments. In this section we present results of two types of
numerical experiments. First, we test Algorithm 3, the third step of Algorithm 1, in
a setting where the errors for steps 1 and 2 of Algorithm 1 are controlled. A second
kind of experiment tests the entire Algorithm 1, including the computation of the
RRD in two different ways, as either a symmetric RRD of the form A = XDXT

or a nonsymmetric RRD of the form A = XDY T . We also include experiments for
Algorithm 1 with Algorithm 2 in step 3. Thus the reader can check that Algorithm 3
really improves the accuracy of the eigenvectors in the few cases in which Algorithm 2
delivers eigenvectors with large errors. When needed, we will distinguish between the
two versions of Algorithm 1: the version with Algorithm 2 in step 3 will be called
SSVD0, and the one with Algorithm 3 will be called simply SSVD. Besides, a first
subsection describes some practical details of the implementation of the three steps
of Algorithm 1.

As will be seen from the experiments in subsection 6.2, Algorithm 1 behaves as
predicted by the error analysis in sections 4 and 5 and compares well in both the sense
of accuracy and of speed with the J-orthogonal algorithm.

6.1. Implementation of Algorithm 1.
1. The RRD of the matrix A in step 1 of Algorithm 1 has been done in the

following two ways:
• symmetric RRD, A = XDXT , using a modification of the symmetric indefinite
Bunch and Parlett (BP) decomposition [3]; more specifically, we have used an
adapted version of the routine SGJGT in [22].
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• a nonsymmetric RRD, A = XDY T , by means of an LU factorization with com-
plete pivoting (Gaussian elimination with complete pivoting (GECP)). We have
used a modification of the LAPACK procedure SGETF2.
2. The SVD in step 2 of Algorithm 1 has been done using Algorithm 3.1 of [6].

Only LAPACK and BLAS routines have been used, as in [6], except for the one-sided
Jacobi code in which we have used a routine developed by Z. Drmač according to
the ideas in [12]. The implementation of the procedure (called SGEPSV in [6] in single
precision) has the following steps.

Algorithm 4. (SGEPSV) (Algorithm 3.1 in [6].)
Input: X,D, Y : A = XDY T.

Output: U,Σ, V : A = UΣV T.

1. QR factorization with column pivoting ofXD,

XDP = QR; A = QRPTY T

LAPACK Routine: SGEQPF

2. Multiply to get W = R(Y P )T; A = QW
BLAS Routine: STRMM

3. SVD of W with one-sided Jacobi; W = UΣV T; A = QUΣV T

Routine: S SGESVDJ developed by Z. Drmač [12]

4. Multiply U = QU; A = UΣV T

LAPACK Routine: SORMQR

Two versions of this algorithm have been used, depending on whether right-
Jacobi (right multiplication on W by Jacobi plane rotations) or left-Jacobi (right
multiplication on WT by Jacobi plane rotations) is employed in the one-sided Jacobi
step 3 of Algorithm 4 in [6]. The left-Jacobi version has the advantage of speeding up
the convergence. Although the error bounds for this version are weaker than for the
other version (see [11] or [10, Appendix A]), no significant difference in accuracy has
ever been observed in practice. Our experiments confirm this.

In any case the routine that has been used computes one of the singular vector
matrices by a product of Jacobi plane rotations. There exist much faster, equally
accurate, versions of one-sided Jacobi algorithms which do not accumulate rotations
[14], and which could also be used. Nevertheless, with the present implementation the
timing statistics of Algorithm 1 are comparable to the J-orthogonal algorithm (see
the timing data in the last paragraph of Experiment 2 in subsection 6.2 below).

3. Algorithm 2 in step 3 of Algorithm 1 has been implemented as described in
subsection 3.3. Algorithm 3, the final version of step 3 in Algorithm 1, has been imple-
mented as described in section 5. Some additional specific details are the following:

(i) Recall that steps 1 and 2 are the same in both Algorithms 2 and 3, and
therefore the eigenvalues computed by both algorithms are the same.

(ii) The choice of clusters in step 1 of Algorithms 2 and 3 has been done using
(29) by taking C = 1 and using the O(n2) estimator LAPACK routine STRCON to
estimate κ(R′), or κ(X), κ(Y ), when starting from a nonfactorized matrix. When
generating matrices in RRD form A = XDXT , some matrices X producing values of
εκ(R′)κ(X) larger than 1 have appeared. This means that the SVD routine, Algorithm
4, guarantees no significant digits of precision in the computation of the singular
values. Moreover, using (29) produces in this case that all singular values are contained
in just one cluster. Our discussion after Theorem 5.5 has led us to establish in practice
the criterion to include two contiguous singular values σj , σj+1 in the same cluster
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whenever

|σj − σj+1|
σj

≤ min{εκ(R′)max{κ(X), κ(Y )}, 1/n}.(65)

(iii) The product ∆i = V T
i Ui in step 11 of Algorithm 2.2 has been done using

the BLAS routine SGEMM.
(iv) The diagonalization of ∆i = [W+

i W−
i ]Ji[W

+
i W−

i ]T (step 12 of Algorithm
2.2) has been done using the LAPACK routine SSYEV applied only to the triangular
upper half of the matrix, as assumed in Lemma 4.5. Finally, the eigenvector matrices
Q±

i = ViW
±
i (step 13 of Algorithm 2.2) are obtained using the BLAS multiplication

routine SGEMM.
(v) In all the experiments the value for the parameter tolgap appearing in

Algorithm 3.1 has been set to tolgap = 1/2.

6.2. Numerical results. The following experiments were done using an AMD
K7 ATHLON processor with IEEE arithmetic, and the routines were implemented
with Fortran PowerStation 4.0 from Microsoft. All numerical experiments in this
section have been done with nonsingular matrices, although as pointed out in sections
3 and 4, Algorithm 1 also can be applied to rank-deficient matrices.

In the first experiment we start from matrices already in factorized RRD form
A = XDXT , directly generating the matrices X and D. This has helped us to focus
on the accuracy of step 3 in Algorithm 1 since, given the RRD, the work by Demmel
et al. in [6] allows us to control the error in step 2 of Algorithm 1.

In the second group of experiments, two different kinds of nonfactorized test
matrices have been generated: graded matrices and matrices specifically designed
in [22] to guarantee a good performance of the J-orthogonal algorithm. The reason
for choosing graded matrices is that it is known, under the conditions given in [6,
section 4], that an accurate RRD, in the sense of (10), can be computed using a plain
implementation of GECP. For the rest of the classes of matrices treated in [6, pp. 26–
27], special implementations of GECP are needed to get the desired accuracy, and
it is unfair to compare in these cases Algorithm 1 with the J-orthogonal algorithm,
since at present no special implementations of the symmetric indefinite factorization
are known to guarantee the accuracy. The reason for choosing the matrices designed
in [22] is to compare Algorithm 1 and the J-orthogonal algorithm on matrices where
the accuracy of the J-orthogonal algorithm of the latter is guaranteed.

To test Algorithm 1 we have used as reference the eigenvalues and eigenvectors
computed by the routine DSYEVJ, developed by I. Slapničar, that implements the
implicit one-sided J-orthogonal algorithm8 [22] in double precision (ε = εD ≈ 1.11×
10−16). From now on these eigenvalues and eigenvectors are denoted, respectively,
simply by λi and qi. These are compared with the eigenvalues and eigenvectors,

λ
(S)
i and q

(S)
i , computed in single precision (ε = εs ≈ 5.96 × 10−8) by the following

routines: SSVD0 (Algorithm 1, using Algorithm 2 in step 3), SSVD (Algorithm 1,
using Algorithm 3 in step 3), SSYEVJ (J-orthogonal algorithm, denoted simply by J-O
in the tables and figure), and, only when we start from a full (not already in rank-

8DSYEVJ is a driver routine formed by two routines that implement the two steps of the J-
orthogonal algorithm: subroutine DGJGT (symmetric indefinite decomposition with complete pivoting)
and subroutine DJGJF (implicit J-orthogonal Jacobi method with the same stopping criterion as one-
sided Jacobi). DSYEVJ has been used when starting with the full matrix A. When starting from a
factorized matrix A = XDXT only the subroutine DJGJF has been used. Similar remarks apply to
the single precision driver routine SSYEVJ.
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revealing form) matrix A, SJAC (standard Jacobi algorithm with the new stopping
criterion introduced in [7, p. 1206] with tol = εs) and SSYEV (LAPACK driver routine
that implements tridiagonalization followed by QR iteration). For these methods the
following quantities have been measured for each test matrix:

1. The maximum relative error in the eigenvalues:

e
(S)
λ = max

i

∣∣∣∣∣λi − λ
(S)
i

λi

∣∣∣∣∣ .(66)

2. A control quantity for eigenvalues:

ϑ(S) =
e
(S)
λ

κ εs
,(67)

where κ = κ(R′)max{κ(X), κ(Y )}, as in (15). Observe that when referring to sym-
metric RRDs κ is just κ(R′)κ(X). According to the bound (38), the quantity ϑ(S) is

expected to be O(1) for Algorithm 1. For the J-orthogonal algorithm the error e
(S)
λ

is essentially bounded by O(εs κ(XDX)), where XDX is the best conditioned column
diagonal scaling of matrix X [22]. However, we have checked that κ(X) ≈ κ(XDX)
in our tests. This is due to the fact that the matrices X appearing in our experiments
do not have any special structure. Furthermore, the extra factor κ(R′) in the denomi-
nator that we have observed is O(n) in the numerical tests in this section (see also [6,
Thm. 3.2]) renders ϑ(S) inadequate to check how well the bounds for the J-orthogonal
algorithm behave, although it is still valid to compare the accuracy of Algorithm 1
and the J-orthogonal algorithm. For the other two considered algorithms, Jacobi and
QR, ϑ(S) is just the maximum error in the eigenvalues normalized in the same way as
for both Algorithm 1 and the J-orthogonal algorithm. Similar remarks apply to the
eigenvector computations.

3. Corresponding to each cluster of eigenvalues, the sine of the maximum of
canonical angles between the subspaces spanned by the computed basis, Qi, in double

precision and the computed basis, Q
(S)
i , in single precision:

E
(S)
Λi

= ‖ sinΘ(Qi, Q
(S)
i )‖2.(68)

In the case of clusters with one single element we have computed just the Euclidean
norm of the difference between the computed eigenvectors in double, qi, and single

q
(S)
i , precision,

e(S)qi = ‖qi − q
(S)
i ‖2.(69)

Actually, the quantities e
(S)
qi are always computed, even in the presence of clusters of

dimension larger than one. We do this in order to check that clusters are only chosen
whenever no accuracy can be guaranteed for individual computed eigenvectors.

4. The control quantities for bases of invariant subspaces are

Ξ
(S)
Σ = max

i

E
(S)
Λi

relgap(Σ
(S)
i )

κ εs
, Ξ

(S)
Λ = max

i

E
(S)
Λi

relgap(Λ
(S)
i )

κ εs
,(70)
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and the corresponding ones for individual eigenvectors are

ξ(S)σ = max
i

‖qi − q
(S)
i ‖2 relgap(σ

(S)
i )

κ εs
,

ξ
(S)
λ = max

i

‖qi − q
(S)
i ‖2 relgap(λ

(S)
i )

κ εs
.

(71)

According to Theorem 4.7, Ξ
(S)
Σ and ξ

(S)
σ are expected to be O(1) for Algorithms

SSVD and SSVD0. Also Ξ
(S)
Λ and ξ

(S)
λ are expected to be O(1) for the J-orthogonal

algorithm, but not for Algorithms SSVD and SSVD0, because the accuracy of SSVD is

governed by Theorem 5.12. However, the quantities Ξ
(S)
Λ and ξ

(S)
λ will be computed by

SSVD and SSVD0 to check in practice how the SSVD algorithm improves the accuracy
of SSVD0 and how it compares with the J-orthogonal algorithm. Notice that the

quantities relgap(Σ
(S)
i ) correspond either to the set of cluster chosen according to (65)

for Algorithm SSVD0 or to the output clusters of Algorithm 3.1 for Algorithm SSVD.

The quantities relgap(Λ
(S)
i ) are always the same because the clusters for eigenvalues

do not change (see the remarks at the end of subsection 5.2). The relgaps in (71) are
the ones defined in (3) and (9) for any of the algorithms.

For the sake of brevity, values of ξ
(S)
σ or ξ

(S)
λ are not shown for routines SJAC and

SSYEV; we simply report that extremely large errors are obtained for these algorithms.
To do our experiments we have generated matrices in single precision in differ-

ent ways. All the random matrices needed have been generated using the LAPACK
routines SLATM1, for diagonal matrices, and SLATMR, for full matrices. When we have
generated matrices with a fixed condition number K, it has been done by producing
diagonal matrices with elements of absolute values in the range from 1 to 1/K, and
after that multiplying by random single precision orthogonal matrices. The distri-
bution of the diagonal elements is controlled by the parameter MODE of the routine
SLATM1: |MODE| = 3, geometrically distributed; |MODE| = 4, arithmetically distributed;
MODE = 5, with logarithms uniformly distributed. If MODE is positive (resp., negative)
the elements are set in decreasing (resp., increasing) order.

Experiment 1. This experiment is designed to test Algorithms 2 and 3. We
have generated n× n matrices X and D (diagonal), factors of a matrix A = XDXT ,
as done in [6]. Parameters have been chosen as follows: κ(X) = 10[2:1:6]; κ(D) =
10[2:2:16]; MODEX = 3, 4, 5; MODED = ±3,±4, 5. For each set of parameters we
have run 20 matrices for n = 50, 100 (total 12000 matrices for each n), 2 for n = 250
(total 1200 matrices), 2 for n = 500 (total 1200 matrices), 1 for n = 1000, and only
for 2 combinations of the MODEs (total 80 matrices).

Figure 6.1 shows the maximum, minimum, and average (over all MODEs, sam-

ples, and κ(D)s) of the quantity log10e
(S)
λ , roughly the number of correct digits in

the computed eigenvalues, as a function of κ(X) for n = 100 for Algorithm 1 (SSVD
or SSVD0) and for the J-orthogonal algorithm. The line εsκ(X)κ(R′) is plotted as a
guide to the eye; the quantity κ(R′) in this line is really the average of κ(R′) over
all the matrices with that value of κ(X). The results confirm the theoretical error
bounds for eigenvalues.

Table 6.1 shows the statistical data corresponding to the quantity ϑ(S). The
aim is to check the bound (38) for Algorithm 1 and compare its accuracy against
the J-orthogonal algorithm. The most significant data in Table 6.1 appear under
the columns labeled “max” where the maximum values of each magnitude (the ones
bounded by the error analysis) are shown. In particular, the fact that the quantities



340 F. M. DOPICO, J. M. MOLERA, AND J. MORO

2 2.5 3 3.5 4 4.5 5 5.5 6
−7

−6

−5

−4

−3

−2

−1

0

1
Fig.1               A=XDXT        n=100

log
10

κ(X)

lo
g 10

e λ

max   SSVD                                
mean SSVD                                 
min    SSVD                               
max      J−O                              
mean    J−O                               
min       J−O                             
log

10
(ε

s
 *κ(X))           

log
10

(ε
s
 *κ(X)*κ(R´))

Fig. 6.1. Experiment 1. Maximum relative error for eigenvalues: log10 e
(S)
λ

against log10 κ(X).

Table 6.1
Experiment 1. Statistical data for accuracy in eigenvalues: ϑ(S).

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

ϑ(SSVD) .030 .40 .022 .31 .015 .17 .013 .22 .013 .20

ϑ(J-O) .041 .58 .037 .44 .039 .47 .044 .63 .050 .65

ϑ(SVD) .030 .40 .022 .31 .015 .17 .013 .22 .012 .20

in the first row are smaller than 1 confirms that Algorithm 1 satisfies the bound (38).
In addition, the third row itself is the control quantity ϑ calculated for the singular
values computed in step 2 of Algorithm 1. The comparison of the first and third
rows shows that Algorithm 1 never misses a sign and always gives eigenvalues with
the same precision as the singular values, except for five matrices of dimension 1000.
These cases have κ(X) = 106 and εsκ(X)κ(R′) greater than 100. Therefore whenever
εsκ(X)κ(R′) < 1 Algorithm 1 has given the eigenvalues with the same precision as the
singular values computed by Algorithm 3.1 in [6]. It can be seen, from both Figure 6.1
and Table 6.1, that Algorithm 1 performs for eigenvalues as well (even a little better,
especially for small values of κ(X)) as the J-orthogonal algorithm, with the maximum
errors in Algorithm 1 adjusting very well to the predicted behavior εκ(X)κ(R′). It
can be observed also that the data do not depend on n.
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Table 6.2
Experiment 1. Statistical data for the number of sweeps.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

Sweeps (SSVD) 5.5 10 6.3 12 7.4 12 8.4 14 9.3 15

Sweeps(J-O) 10.5 20 11.7 22 13.0 22 13.9 24 13.1 24

Moreover, for a significant portion of all the matrices (4144 matrices out of 12000
for n = 50; 6693 matrices out of 12000 for n = 100; 974 matrices out of 1200 for
n = 250; 1105 matrices out of 1200 for n = 500; 79 matrices out of 80 for n = 1000),
clusters of singular values of dimension greater than 1, according to criterion (65),
have been found, with the maximum dimension of a cluster being 5. The average
number of clusters has ranged from almost no clusters for n = 50 to approximately
40 clusters for n = 1000, with a typical dimension of 2. This shows that criterion (65)
chooses clusters which determine perfectly in practice the signs of the eigenvalues.
After applying Algorithm 3.1 all the considered matrices have clusters. The average
number of clusters in this case is approximately 0.3n for all n.

In Table 6.2 we show the statistics for the number of orthogonal Jacobi sweeps
for Algorithm SSVD and the number of hyperbolic Jacobi sweeps for the J-orthogonal
algorithm. These data correspond to the use of left-Jacobi in step 3 of Algorithm 4.
If right-Jacobi is used, the average number of sweeps for Algorithm SSVD is 13.8, with
a maximum of 28 for n = 100, while the accuracy is the same. For these reasons, we
have used in the rest of our experiments the left-handed version of the algorithm. It
can be seen that the J-orthogonal algorithm uses more sweeps than Algorithm SSVD:
on average, from 5 more for n = 50 to almost 4 for n = 1000.

Now we focus on the analysis of data both for eigenvectors and for bases of

invariant subspaces. Table 6.3 shows the quantities Ξ
(S)
Σ and Ξ

(S)
Λ defined in (70) for

Algorithm1, in both versions: SSVD0, using Algorithm2, and SSVD, using Algorithm3.
For the J-orthogonal algorithm we only show the quantity that governs its error:

Ξ
(S)
Λ . When comparing the results of routines SSVD0 and SSVD with the corresponding

relative gaps of singular values (rows 1 and 3), it can be seen that both methods
behave as expected. When comparing the errors in the bases computed using the
routine SSVD0 with the relative gap between eigenvalues, the results can go rather
poorly (see row 2).9 When using SSVD these results improve significantly (compare
rows 4 and 2), showing that the method computes the bases for these test matrices
with errors depending on the relative gap between eigenvalues, as the J-orthogonal
algorithm does. It can be observed that the control quantities increase mildly with
n for all the algorithms. Since this effect is not observed in the accuracy of the
eigenvalues, this lead us to question if it is a real effect of the eigenvector bounds or
is simply reflecting the fact that the quantities Ξ are computed from n-dimensional
vectors.

Table 6.4 shows the quantities ξ
(S)
σ and ξ

(S)
λ defined in (71). These are the quanti-

ties referring to the errors eigenvector by eigenvector. It can be seen that the accuracy
of the eigenvectors is not spoiled by the clustering processes implicit in Algorithms

9However, as can be deduced from the mean value of Ξ(SSVD0)Λ , matrices for which SSVD0 com-
putes eigenvectors with a large error with respect to the relative gap between eigenvalues are quite
infrequent.
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Table 6.3
Experiment 1. Statistical data for accuracy in bases of invariant subspaces.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

Ξ(SSVD0)Σ .032 .46 .051 1.2 .084 2.5 .12 4.5 .17 4.4

Ξ(SSVD0)Λ .37 320 1.1 3300 2.4 500 6.5 1700 5.6 150

Ξ(SSVD)Σ .034 .50 .056 1.2 .095 2.5 .13 4.5 .18 4.4

Ξ(SSVD)Λ .041 .65 .075 4.6 .15 3.2 .23 6.0 .37 7.3

Ξ(J-O)Λ .044 .64 .076 1.5 .15 2.6 .21 5.7 .32 7.3

Table 6.4
Experiment 1. Statistical data for accuracy in eigenvectors: ξ

(S)
σ and ξ

(S)
λ
.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

ξ(SSVD0)σ .033 .74 .057 1.3 .092 2.5 .13 4.5 .19 4.4

ξ(SSVD0)
λ

.37 320 1.1 3300 2.4 500 6.5 1700 5.6 150

ξ(SSVD)σ .035 .90 .063 1.6 .10 2.5 .14 4.5 .20 4.4

ξ(SSVD)
λ

.045 .90 .089 4.6 .17 3.2 .26 6.0 .42 7.3

ξ(J-O)
λ

.044 .64 .076 1.5 .15 2.6 .21 5.7 .32 7.3

SSVD and SSVD0. Comments similar to those made with respect to Table 6.3 apply
here.

To conclude, we show other quantities of numerical interest. The minimum sin-
gular value and eigenvalue relative gaps for clusters selected in Algorithm 2 have
exceeded, respectively, 10−5 and 10−4, and after the clustering process in Algorithm 3
both relative gaps, for eigenvalues and singular values, have been bigger than 10−4.
The minimum relative gap for individual eigenvalues has been greater than 10−5, and
for singular values greater than 10−8. The maximum values of κ(R′) have been 190
for n = 50, 270 for n = 100, 600 for n = 250, 1300 for n = 500, and 2200 for n = 1000,
showing that it increases roughly as some constant times n.

Experiment 2. We have generated n× n graded matrices A = DBD by mul-
tiplying random well-conditioned matrices, B, and random ill-conditioned diagonal
matrices, D, to test the accuracy of the complete Algorithm 1 including the factor-
ization in step 1. Not always can an accurate RRD fulfilling (10) be computed for
graded matrices [6, section 4]: the accuracy that can be guaranteed at best (and is
frequently achieved in practice) is O(εsκ(B)). Thus, high relative accuracy is ex-
pected when computing eigenvalues and eigenvectors for the matrices generated in
this experiment. As mentioned in section 6.1, the initial RRD in Algorithm 1 has
been done in two ways: using either a modification of the symmetric indefinite BP
decomposition or a nonsymmetric LU factorization with complete pivoting. We have
obtained similar results for both decompositions. Parameters have been chosen as
follows: κ(B) = 10[0:1:3], κ(D) = 10[2:2:10], MODEB = 3, 4, 5, MODED = ±3,±4, 5.
For each set of parameters we have run 50 matrices for n = 50, 100 (total 15000 ma-
trices for each n), 5 for n = 250, 500 (total 1500 matrices for each n), 1 for n = 1000,
and only for 5 combinations of the MODEs (total 100 matrices). As announced,
Jacobi and QR also have been applied on these test matrices.

The same quantities as in Experiment 1 are shown in Table 6.5 for eigenvalues and
in Table 6.6 for individual eigenvectors. The results for bases of invariant subspaces
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Table 6.5
Experiment 2. Statistical data for accuracy in eigenvalues: ϑ(S).

n 50 100 250
Method mean max mean max mean max

ϑ(SSVD) 1.8 2600 .82 1100 .21 52

ϑ(J-O) 1.5 1100 .80 1200 .21 64

ϑ(JAC) 3 · 1015 3 · 1019 1 · 1014 3 · 1017 1 · 1013 7 · 1015
ϑ(QR) 2 · 1013 2 · 1017 7 · 1011 5 · 1015 5 · 1010 4 · 1013
ϑ(SVD) 1.8 2600 .82 1100 .21 52

n 500 1000
Method mean max mean max

ϑ(SSVD) .22 140 .014 .24

ϑ(J-O) .31 320 .019 .33

ϑ(JAC) 7 · 1012 5 · 1015 2 · 1011 8 · 1012
ϑ(QR) 2 · 1010 1 · 1013 2 · 103 4 · 104
ϑ(SVD) .22 140 .014 .24

Table 6.6
Experiment 2. Statistical data for accuracy in eigenvectors: ξ

(S)
σ and ξ

(S)
λ
.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

ξ(SSVD0)σ .47 11 .28 4.6 .17 1.1 .064 .55 .023 .16

ξ(SSVD0)
λ

3.6 3300 2.8 1900 1.2 1600 .30 14 .067 .51

ξ(SSVD)σ .47 11 .31 5.2 .20 1.1 .076 1.3 .024 .16

ξ(SSVD)
λ

.56 12 .34 5.8 .25 2.4 .091 1.3 .030 .16

ξ(J-O)
λ

.60 21 .37 4.3 .17 1.2 .090 .67 .039 .20

are almost the same as those in Table 6.6 and, therefore, are not shown. In these
tables we show only the data corresponding to symmetric RRDs obtained by the BP
method. The corresponding data for these tables using the unsymmetric RRD based
on GECP are so similar that they are omitted. Nevertheless for other quantities (see
Tables 6.7 and 6.8) we show the results for both decompositions (GECP is abbreviated
as CP in the tables).

Notice that the maximum values in Table 6.5 are greater than in Experiment 1,
for both Algorithm 1 and the J-orthogonal algorithm. This is due to the error in the
initial factorization step, which is roughly bounded by O(εsκ(B)). In any case, they
behave much better than the classical methods, Jacobi and QR. An interesting remark
is that the quantities ϑ(S) decrease in Table 6.5 as n increases. This is because in this
experiment (see Table 6.7) the condition number κ increases with the dimension

n faster than the relative errors e
(S)
λ in the eigenvalues. The control quantities for

eigenvectors in Table 6.6 also decrease with n for the same reason. However, the
maximum values of the control quantities for eigenvalues (Table 6.5) are much bigger
than those of eigenvectors (Table 6.6). This is not explained by the error bounds.

As in Experiment 1, for a good number of the generated matrices (310 matrices
out of 15000 for n = 50; 4821 matrices out of 15000 for n = 100; 1019 matrices out
of 1500 for n = 250; 1454 matrices out of 1500 for n = 500; 100 matrices out of
100 for n = 1000), there are clusters of singular values of dimension greater than 1,
according to criterion (65), with a maximal dimension of 5. The average number of
clusters has ranged from almost no clusters for n = 50 to approximately 60 clusters
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Table 6.7
Experiment 2. Table for κ(R′) and Mκ = max{κ(X), κ(Y )}.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max
κ(R′)(BP) 11 39 23 84 67 220 150 430 330 960
κ(R′)(CP) 11 37 24 80 71 201 160 450 360 860
κ(X) (BP) 100 500 300 1300 1400 5000 4300 16000 14000 40000
Mκ (CP) 78 320 230 1000 1000 3200 2900 7900 5000 20000

Table 6.8
Experiment 2. Statistical data for the number of sweeps.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

Sweeps(SSVD)BP 5.0 7 5.6 8 6.4 9 7.3 9 8.1 9

Sweeps(SSVD)CP 5.0 7 5.5 8 6.4 9 7.2 9 8.0 9

Sweeps(J-O) 6.3 8 7.1 10 8.5 11 9.6 12 11.0 13

for n = 1000 with a typical dimension of 2. This shows again that criterion (65)
determines perfectly in practice the signs of the eigenvalues, even when clusters are
present. After applying Algorithm 3.1 all the considered matrices have clusters. The
average number of clusters has been in this case around 0.3n for all n.

In addition, we show other quantities of numerical interest. The minimum sin-
gular value and eigenvalue relative gaps for clusters selected in Algorithm 2 are,
respectively, 10−5 and 3.3 · 10−4; and after the clustering process in Algorithm 3 both
relative gaps, for eigenvalues and singular values, have reached the minimum 3.3·10−4.
The minimum relative gap for individual eigenvalues has been 4.1 · 10−5, and for sin-
gular values greater than 9.1 · 10−8. With respect to the condition numbers κ(X),
max{κ(X), κ(Y )} and κ(R′), they are shown in Table 6.7. The maximum values of
εκ(X)κ(R′) are 8 · 10−4 for n = 50, 4 · 10−3 for n = 100, 5 · 10−2 for n = 250, 3 · 10−1

for n = 500, and 1.8 for n = 1000, showing that it increases roughly as some constant
times n.

Table 6.8 shows that the J-orthogonal algorithm uses again more sweeps than
Algorithm 1: on average, from one more for n = 50 to three more for n = 1000.
This is reflected in the run-time used by the different routines. Taking as a reference
the time employed by the QR routine (SSYEV of LAPACK), we have the following
average results for our experiments: For n = 100, Algorithm SSVD (with symmetric
RRD factorization) employs 200% more time than QR, the J-orthogonal algorithm
employs 250% more time, and the Jacobi algorithm SJAC employs 190% more time;
for n = 500, Algorithm SSVD (with symmetric RRD factorization) employs 380% more
time, the J-orthogonal algorithm employs 350% more time, and the Jacobi algorithm
SJAC employs 340% more time. These numbers can be explained as coming from two
opposite effects: SSVD uses less Jacobi sweeps, but the number of clusters increases
with the size of the matrix.

Experiment 3. We have also generated full matrices in another form to compare
the accuracy of Algorithms 1 and J-orthogonal. We have used the matrix generator
developed in [22], which is specifically designed to test the performance of the J-
orthogonal algorithm on matrices for which the error bounds of this algorithm are
controlled (see [22] for details).

The set of parameters has been chosen as follows: n = 100; ASCAL = [1 : 1 : 3];
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Table 6.9
Experiment 3. Statistical data.

ϑ ξσ ξλ Sweeps
Method mean max mean max mean max mean max
SSVD .27 2.2 2.1 14 2.9 21 4.6 6
J-O .47 2.8 − − 3.1 20 5.5 8

HSCAL= [5 : 2 : 25].10 For each set of parameters we have run 50 matrices, in total
1650 matrices.

The results confirm that Algorithm SSVD performs very well also for matrices
of this type. The results for eigenvalues, eigenvectors, and number of sweeps are
summarized in Table 6.9. As in the other experiments, the results for individual

eigenvectors, ξ(S)σ,λ , are similar to those for bases. For this set of matrices, no clusters of
singular values with dimension greater than 1 were found in the sense of criterion (65).

Experiment 4. The results for testing the accuracy of computed eigenvectors
in previous experiments seem to show that the errors for the SSVD and J-orthogonal
algorithms are comparable (see rows 4 and 5 of Tables 6.4, 6.6 and columns 6–7 of
Table 6.9 in Experiment 3), both depending on the relative gap between eigenvalues.
However, it should not be forgotten that the error bound for eigenvectors in the SSVD
algorithm is given by the expressions (4) and (5) (or, more precisely, Theorem 5.12)
and not (11). It is not difficult to think of situations in which Algorithm SSVD can
calculate single eigenvectors much worse than the J-orthogonal algorithm. Take for
example the following 3×3 very well conditioned matrix generated in single precision:

A =

 .1804019 .9148742 −.3611555
.9148742 −.2908984 −.2799287

−.3611555 −.2799287 −.8894936


with eigenvalues λ1 = 0.9999904633563307, λ2 = −0.9999802814301686, and λ3 =
−1.000000302456291 in double precision. The corresponding computed eigenvectors
in single precision have the following errors for the SSVD algorithm:

[‖qi − q
(SSVD)
i ‖2]i=1,2,3 = [3.12, 5.25, 4.23]× 10−3

and

[‖qi − q
(J−O)
i ‖2]i=1,2,3 = [3.79× 10−5, 1.43, 1.43]× 10−3

for the J-orthogonal algorithm. Notice that the J-orthogonal algorithm computes the
eigenvector corresponding to the positive eigenvalue λ1 with full machine precision,
while with the SSVD algorithm five significant decimal digits are lost. The reason
for this is easily understood, because the eigenvalue relative gap for λ1 is 1, while
the corresponding singular value relative gap is near 10−5 (in this case relative or
absolute gaps are equivalent). This cannot be improved by the clustering process
done in Algorithm 3.1, because any of the two possible clusters of singular values
containing one positive and one negative eigenvalue has a close singular value at a
distance of order 10−5, and the minimum of the eigenvalue relative gaps is also of
order 10−5.

10The routine GENSYM generates a nonsingular symmetric matrix H of order n, with κ(H) ≈
10HSCAL and the measure C(A, Â) ≈ 10ASCAL (see [22] for details).
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However, notice that the SSVD algorithm is able to compute all the eigenvectors

with three correct decimal digits and that maxi e
(SSVD)
qi /maxi e

(J-O)
qi = 3.7, of order

1 as predicted by the bound (5); i.e., the J-orthogonal algorithm also computes some
eigenvectors with three correct significant digits.

Finally, notice that if all the eigenvalues of the matrix A are considered inside the
same cluster, the SSVD algorithm computes the eigenvector corresponding to λ1 with
full machine precision, according to the bound (51). However, the eigenvectors cor-
responding to the negative eigenvalues are computed with errors of order 1, although
according to (51) they form a very accurate orthonormal basis of the invariant sub-
space associated with the negative eigenvalues.

Experiment 5. Our last experiment is designed to show how the SSVD algorithm,
like the J-orthogonal one, is able to compute accurate bases of invariant subspaces,
even when the gaps between eigenvalues are very small.

We generate a 10 × 10 matrix A = QDQT by multiplying, in single preci-
sion, a single precision random orthogonal matrix Q by the diagonal matrix D =
diag[−1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1]. Due to roundoff errors, the absolute values of
all the eigenvalues of A become different. But two clusters of singular values are found
according to criterion (65), one around 1, of dimension 5, and another around 0.1,
of the same dimension. Since one of the clusters is unsigned, Algorithm 3.1 does not
change these clusters. The absolute gaps between the singular values inside each clus-
ter exceed 10−7. Thus the double precision routine DSYEVJ computes the eigenvectors
with at least eight correct decimal digits. The SSVD and J-orthogonal algorithms, in
single precision, compute all the eigenvectors with errors of O(1), except the eigenvec-
tor corresponding to the negative eigenvalue which is computed, in both cases, with
an error near 10−7. This error is predicted by bound (51) for the SSVD algorithm (see
also the remarks after the proof of Theorem 4.7). The errors in the invariant subspaces

can be estimated using E
(S)
Λi

in (68). These, for SSVD and J-orthogonal algorithms,

are of order 10−7 for the following invariant subspaces: the subspace corresponding to
the four positive eigenvalues close to 1; the subspace corresponding to the five positive
eigenvalues close to 0.1; and the subspace corresponding to the negative eigenvalue.
Moreover, the same errors appear if we consider the invariant subspace corresponding
to all the eigenvalues of absolute value around 1 (including the negative one). This
shows in practice that, as studied in the error analysis leading to Theorem 4.7, once a
cluster of singular values is chosen, we obtain two bases, one for the invariant subspace
corresponding to the positive eigenvalues in the cluster and another for the negative
ones, with an error of the same order as the one appearing in the basis of the singular
subspace corresponding to the whole cluster of singular values.

7. Conclusions and future work. In this paper we have presented formal error
analysis and numerical experiments of a new algorithm which computes eigenvalues
and eigenvectors with high relative accuracy for the largest class of symmetric matrices
known so far—in particular for all symmetric matrices belonging to the classes of
general matrices studied in [6]. This high relative accuracy is achieved for a given
symmetric matrix A whenever an accurate rank-revealing decomposition (RRD) of A
can be computed.

The new algorithm is based on computing, in a first stage, a singular value de-
composition (SVD) of the symmetric matrix A. This is the reason for its wide appli-
cability, because in this stage the symmetry of A is not used. Thus, we can compute
nonsymmetric RRDs of A and apply the theory developed in [6].

It is not known if accurate symmetric RRDs can be computed for all symmetric
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matrices in any of the classes described in [6]. The J-orthogonal algorithm [26, 22]
computes eigenvalues and eigenvectors with high relative accuracy only if symmetric
RRDs that are accurate enough are available. The authors are presently studying this
interesting question.

Appendix. Proof of Theorem 5.7. We begin with some previous elementary
results that will be frequently used.

Let a and a′ be any two real numbers. Then

a− a′

a′
=

a−a′
a

1− a−a′
a

and
a

a′
=

1

1− a−a′
a

.(72)

The following lemma bounds the relative distance between the maximum and the
minimum elements in a cluster of tolerance Cl.

Lemma A.1. Let Σ1 = {σi+1, σi+2, . . . , σi+d1
} be a cluster of tolerance Cl with

d1 elements. Then

σi+1 − σi+d1

σi+1
≤ (d1 − 1)Cl.

Proof. Notice that

σi+1 − σi+d1

σi+1
=

σi+1 − σi+2

σi+1
+

σi+2 − σi+3

σi+1
+ · · ·+ σi+d1−1 − σi+d1

σi+1
.

Thus

σi+1 − σi+d1

σi+1
≤ σi+1 − σi+2

σi+1
+

σi+2 − σi+3

σi+2
+ · · ·+ σi+d1−1 − σi+d1

σi+d1−1
≤ (d1 − 1)Cl.

Proof of Theorem 5.7. Let

Σ1 = {σi+1, σi+2, . . . , σi+d1}, Σ2 = {σi+d1+1, σi+d1+2, . . . , σi+d1+d2}(73)

be the two clusters of singular values appearing in the statement of the theorem.
Although in this setting the elements of Σ1 are greater than the elements of Σ2, the
opposite case can be proved with the notation in (73) by interchanging the roles of
Σ1 and Σ2.

Lemma 5.3 implies

rg(Σ1 ∪ Σ2) = min

{
σi − σi+1

σi+1
,
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

}
,(74)

and

min{rg(Σ1), rg(Σ2)}
= min

{
σi − σi+1

σi+1
,
σi+d1 − σi+d1+1

σi+d1

,
σi+d1 − σi+d1+1

σi+d1+1
,
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

}
,

(75)

where if some of the subindices do not belong to {1, . . . , n}, the corresponding fraction
does not appear. Therefore rg(Σ1 ∪ Σ2) ≥ min{rg(Σ1), rg(Σ2)}, and the assumption
(58) appearing in Theorem 5.7 leads to the following results:
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1.

min{rg(Σ1), rg(Σ2)} = σi+d1
− σi+d1+1

σi+d1

.(76)

2.

rg(Σ1) =
σi+d1 − σi+d1+1

σi+d1

.(77)

Thus in the setting (73), condition (58) implies that Σ2 is the relative closest cluster
to Σ1 and it is not necessary to impose this condition explicitly. This has been done in
the statement of Theorem 5.7 for the sake of clarity. Recall that one of the hypotheses
of Theorem 5.7 is

rg(Σ1) < t < 1.(78)

The previous setting also allows us to prove Theorem 5.7 in the case in which the
elements of Σ1 are smaller than the elements of Σ2 just by interchanging the roles of
Σ1 and Σ2 in the statement of the theorem. Notice that condition rg{Σ1 ∪ Σ2} >
min{rg{Σ1}, rg{Σ2}} remains unchanged, and therefore its consequences (76), (77)
still hold. This, together with rg(Σ2) < t < 1, leads to rg(Σ1) < t, i.e., condition
(78). Therefore, in the rest of the proof we will focus on the situation in (73) with
assumptions (58) (and its consequences (76)–(77)) and (78).

Suppose that (i+ d1+ d2+1) ∈ {1, . . . , n}. If λΠ(i+d1+d2+1) is either zero or has
the same sign as the elements of Λ2, then rg(Λ2) ≤ (σi+d1+d2

−σi+d1+d2+1)/σi+d1+d2
.

Otherwise λΠ(i+d1+d2+1) has the same sign as the elements of Λ1, and then rg(Λ1) ≤
(σi+d1

− σi+d1+d2+1)/σi+d1
. In any case

min{rg(Λ1), rg(Λ2)} ≤ max

{
σi+d1

− σi+d1+d2+1

σi+d1

,
σi+d1+d2

− σi+d1+d2+1

σi+d1+d2

}
=

σi+d1
− σi+d1+d2+1

σi+d1

.

(79)

Suppose now that i belongs to the set {1, . . . , n}. If λΠ(i) has the same sign as
the elements of Λ1, then rg(Λ1) ≤ (σi − σi+1)/σi+1. Otherwise λΠ(i) has the same
sign as the elements of Λ2, and then rg(Λ2) ≤ (σi − σi+d1+1)/σi+d1+1. In any case

min{rg(Λ1), rg(Λ2)} ≤ max

{
σi − σi+1

σi+1
,
σi − σi+d1+1

σi+d1+1

}
=

σi − σi+d1+1

σi+d1+1
.(80)

Once (79) and (80) have been established, it only remains to prove

σi+d1 − σi+d1+d2+1

σi+d1

≤ R
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

(81)

and

σi − σi+d1+1

σi+d1+1
≤ R

σi − σi+1

σi+1
,(82)

where

R =
1

1− t

(
1 +

1

1− (d− 1)Cl
+

1

1− (d− 1)Cl

(d− 1)Cl

rg(Σ1 ∪ Σ2)

)
.
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If these two inequalities hold, then (79) and (80) imply that min{rg(Λ1), rg(Λ2)} is
bounded simultaneously by the right-hand side of (81) and the right-hand side of (82).
Thus using (74), Theorem 5.7 is finally proved.

Proof of (81). Notice that

σi+d1 − σi+d1+d2+1

σi+d1

=
σi+d1 − σi+d1+1

σi+d1

+
σi+d1+1 − σi+d1+d2

σi+d1

+
σi+d1+d2

− σi+d1+d2+1

σi+d1

.

(83)

The first term of the right-hand side in the previous equation is less than (σi+d1+d2 −
σi+d1+d2+1)/σi+d1+d2

, due to (76) and (75). The third term is trivially bounded by
the same quantity, since σi+d1 > σi+d1+d2 . For the second term,

σi+d1+1 − σi+d1+d2

σi+d1

<
σi+d1+1 − σi+d1+d2

σi+d1+1
≤ (d2 − 1)Cl,

where the last inequality is just Lemma A.1 applied to Σ2. Plugging these bounds
into (83) and using rg(Σ1 ∪ Σ2) ≤ (σi+d1+d2

− σi+d1+d2+1)/σi+d1+d2
, we obtain

σi+d1 − σi+d1+d2+1

σi+d1

≤
(
2 +

(d2 − 1)Cl

rg(Σ1 ∪ Σ2)

)
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

.

The first factor of the right-hand side is bounded by R and (81) follows.
Proof of (82). Notice that

σi − σi+d1+1

σi+d1+1
=

σi − σi+1

σi+d1+1
+

σi+1 − σi+d1

σi+d1+1
+

σi+d1
− σi+d1+1

σi+d1+1
.(84)

Now we will bound the three terms in the right-hand side of (84). We begin with the
last one: using the first equality in (72), (77), (78), and (76), we get

σi+d1 − σi+d1+1

σi+d1+1
<

1

1− t

σi+d1 − σi+d1+1

σi+d1

<
1

1− t

σi − σi+1

σi+1
.(85)

For the second term, the first equality in (72) and Lemma A.1 yield

σi+1 − σi+d1

σi+d1+1
=

σi+d1

σi+d1+1

σi+1−σi+d1

σi+1

1− σi+1−σi+d1

σi+1

≤ σi+d1

σi+d1+1

(d1 − 1)Cl

1− (d1 − 1)Cl
.

The factor σi+d1
/σi+d1+1 can be bounded by 1/(1 − t), using the second equality

in (72), (77), and (78). Therefore, the following bound for the second term of the
right-hand side of (84) is obtained:

σi+1 − σi+d1

σi+d1+1
≤ 1

1− t

(d1 − 1)Cl

1− (d1 − 1)Cl
.(86)

Finally, the first term verifies

σi − σi+1

σi+d1+1
=

σi+d1

σi+d1+1

σi+1

σi+d1

σi − σi+1

σi+1
.
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The factor σi+d1
/σi+d1+1 already has been bounded by 1/(1 − t), while the factor

σi+1/σi+d1 is bounded by 1/(1 − (d1 − 1)Cl) by the second equality in (72) and
Lemma A.1. Thus

σi − σi+1

σi+d1+1
≤ 1

1− t

1

1− (d1 − 1)Cl

σi − σi+1

σi+1
.(87)

Replacing (87), (86), and (85) in (84), and taking into account that rg(Σ1 ∪ Σ2) ≤
(σi − σi+1)/σi+1,

σi − σi+d1+1

σi+d1+1
≤ 1

1− t

(
1 +

1

1− (d1 − 1)Cl
+

1

1− (d1 − 1)Cl

(d1 − 1)Cl

rg(Σ1 ∪ Σ2)

)
σi − σi+1

σi+1

is obtained. Now inequality (82) is easily proved.
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the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299
(1999), pp. 21–80.

[7] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[8] F. M. Dopico, A note on sin Θ theorems for singular subspace variations, BIT, 40 (2000), pp.
395–403.

[9] F. M. Dopico and J. Moro, Perturbation theory for simultaneous bases of singular subspaces,
BIT, 42 (2002), pp. 84–109.

[10] F. M. Dopico, J. M. Molera, and J. Moro, An Orthogonal High Relative Accu-
racy Algorithm for the Symmetric Eigenproblem, Tech. report, available online at
http://www.uc3m.es/uc3m/dpto/MATEM/molera/indice.html.

[11] F. M. Dopico, J. M. Molera, and J. Moro, A note on multiplicative backward errors of
accurate SVD algorithms, submitted.
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