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Abstract

We give a coherent theory of root polynomials, an algebraic tool useful
for the analysis of matrix polynomials. In particular, we first survey results
previously appeared in the literature, giving a formal proof for those that
lacked one. We next extend some of these results providing some new
concepts and related theorems, thus simplifying and expanding the theory.
Then, we give some applications of root polynomials, such as the recovery of
Jordan chains from linearizations of matrix polynomials, or the behaviour
of Jordan chains under rational reparametrization. We also briefly discuss
how root polynomials can be used to define eigenvectors and eigenspaces
for singular matrix polynomials.
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1 Introduction
Root polynomials of regular matrix polynomials (or, equivalently, polynomial
matrices) are introduced in the first chapter of the classical book by Gohberg,
Lancaster, and Rodman [11, Section 1.5] as an analytical concept that simplifies
the study of Jordan chains [11, Section 1.6]. Although root polynomials constitute
a powerful tool for establishing spectral properties of matrix polynomials, they do
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not seem to be widely used in the literature. In fact, in the mentioned landmark
reference [11], root polynomials are only used once after Chapter 1. More precisely,
they are used in [11, Corollary 7.11, p. 203] to characterize divisibility in terms of
spectral data. Recently, root polynomials have been extended for the first time to
singular matrix polynomials in [17, Section 8] as an instrumental technical tool
for proving the main results in that reference.

Both in [11] and [17], root polynomials are considered more an auxiliary than
a central concept and, as a consequence, are treated in a very concise way, which
leads in some occasions to imprecise statements and in general to a theory that
seems more difficult than it actually is. In this context, this paper has three main
goals. First, to establish rigorously and with detail the definition and the most
important properties of root polynomials in the general setting of singular matrix
polynomials. Second, to show that root polynomials interact naturally with a
number of problems that have attracted the attention of the research community
in the last years as, for instance, rational transformations of matrix polynomials,
with particular emphasis on Möbius transformations, [15, 17, 18], linearizations of
matrix polynomials and related recovery properties [1, 2, 4, 5, 14, 16, 19],and dual
pencils [20]. We hope that the third goal of this paper will be obtained as a result
of the two previous ones, since we expect that our manuscript will encourage the
research community to familiarize with, and to use more often, root polynomials,
which should be, in our opinion, one of the fundamental tools of any researcher
on the theory of matrix polynomials.

We emphasize that, in the case of regular matrix polynomials, root polynomials
are very closely related to Jordan chains, as it is clearly explained in [11, Sections
1.5 and 1.6]. The relation of a root polynomial to a Jordan chain is the same of
that of a generating function [21] to a sequence; for a survey of good reasons to
use generating functions as a tool to manipulate and analyze sequences, see [21].
Therefore, all the results in this paper admit, when specialized to regular matrix
polynomials, an immediate translation into the language of Jordan chains. This
solves a number of open problems in the literature. For example, how rational
transformations of polnoymial matrices change the Jordan chains of the polyno-
mial (the answer to this question is briefly sketched in [17, Remark 8.3] and is
considered an open problem in [15, Remark 6.12]), or how Jordan chains of a
matrix polynomials can be recovered from the Jordan chains of some of the most
relevant linearizations studied in the literature.

On the other hand, one has singular matrix polynomials. Currently, there is
not even agreement in the literature on how to define consistently an eigenvector
of a singular matrix polynomial corresponding to anyone of its eigenvalues, and
the first vectors of traditional Jordan chains are eigenvectors [11]. As we show in
this paper, root polynomials naturally extend to the singular case. Clearly, we
may still view them as generating functions, which is a natural way to extend
Jordan chains to the singular case. We feel that this task is beyond the goal
of the present paper. However, we stress that the extension of the definition of
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root polynomials from regular to singular matrix polynomials is performed in
this paper in a fully consistent way leading to a concept that is easy to handle.
Hence, the theory presented in this paper can be used to define in the future
Jordan chains of singular matrix polynomials in a meaningful way, which is of
interest in certain applications [3]. For the present, we will restrict here to sketch
in Subsection 2.3 how eigenvectors and eigenspaces of singular matrix polynomials
can be defined by following the ideas introduced in [17] and further developed in
this paper.

The paper is organized as follows. Section 2 revises in its first part some basic
results of the theory of matrix polynomials and introduces in its second part
the definition of root polynomials and some related concepts. The existence of
maximal sets of root polynomials at any finite eigenvalue of a matrix polynomial
is established in Section 3, as well as their relationship with partial multiplicities
and their behavior under some polynomial equivalences. Section 4 proves some
extremality properties of maximal sets of root polynomials that are used in Section
5 to generate many maximal sets of root polynomials from a given maximal set, in
particular maximal sets of root polynomials with minimal grade. Root polynomials
at infinity are introduced in Section 6. Sections 7, 8, and 9 establish, respectively,
how root polynomials change under rational transformations, how root polynomials
can be recovered from those of linearizations, and how root polynomials of dual
pencils are related each other. Finally, some conclusions are discussed in Section
10.

2 Preliminaries

2.1 Basic results
Although a theory of root polynomials over any field can be developed, it is
complicated by the fact that the finite eigenvalues of a matrix polynomial over a
generic field K may lie in the algebraic closure of K. In this paper, we will neglect
this complication for simplicity of exposition, and we consider polynomials with
coefficients in an algebraically closed field F. Moreover, we will present a theory
of right root polynomials and related concept. Indeed, left root polynomials
(as well as left eigenvectors of matrix polynomials, left minimal indices, etc.)
of a matrix polynomial P (x) can simply be defined as right root polynomials
(eigenvectors, minimal indices) of P (x)T . It is therefore sufficient to consider right
root polynomials, and, since there is no ambiguity in this paper, in the following
we will omit the adjective “right”.

Throughout, we shall consider matrix polynomials, possibly rectangular, with
elements in the principal ideal domain F[x]; the field of fractions of F[x] is denoted
by F(x). We denote the set of m× n such matrix polynomials by F[x]m×n. We
first recall some basic definitions in the theory of matrix polynomials.
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Definition 2.1 (Normal rank). Let P (x) ∈ F[x]m×n. Then the rank of P (x) over
the field F(x) is called the normal rank of P (x).

A square matrix polynomial P (x) ∈ F[x]n×n such that its normal rank is n is
called regular. Any matrix polynomial which is not regular is said to be singular.

Definition 2.2 (Finite eigenvalues). Let P (x) ∈ F[x]m×n have normal rank r.
Then µ ∈ F is called a finite eigenvalue of P (x) if the rank of P (µ) over F is
strictly less than r.

Recall that in ring theory a unit is an invertible element of the ring, i.e.1,
u ∈ R is a unit if ∃ v ∈ R such that uv = vu = 1R. When R = F[x]n×n is a
square matrix polynomial ring, its units are sometimes called unimodular matrix
polynomials. It is straightforward to show that the units of F[x]n×n are precisely
those matrix polynomials whose determinant is a nonzero constant in F. We now
expose two fundamental theorems on matrix polynomials and their Smith and
local Smith canonical forms [11].

Theorem 2.3 (Smith form). Let P (x) ∈ F[x]m×n. Then there exists two unimod-
ular matrix polynomials U(x) ∈ F[x]m×m, V (x) ∈ F[x]n×n, such that

S(x) = U(x)P (x)V (x) =



d1(x) 0 . . . 0 . . . 0
0 d2(x) . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . dr(x) . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . 0


,

where d1(x), . . . , dr(x) ∈ F[x] are called the invariant polynomials of P (x) and
they are monic polynomials such that dk(x)|dk+1(x) for all k = 1, 2, . . . , r−1. The
matrix polynomial S(x) is uniquely determined by P (x) and is called the Smith
canonical form of P (x). Moreover, factorizing

di(x) =
∏
j∈J

(x− xj)κi,(j) ,

which is possible for some finite set of indices J as we have assumed that F is
algebraically closed, the factors (x − xj)κi,(j) such that κi,(j) > 0 are called the
elementary divisors of P (x) corresponding to the eigenvalue xj. The nonegative
integers κi,(j) satisfy κi1,(j) ≤ κi2,(j) ⇔ i1 ≤ i2 and are called the partial multiplici-
ties of the eigenvalue xj. The algebraic multiplicity of an eigenvalue is the sum of
its partial multiplicities; the geometric multiplicity of an eigenvalue is the number

1It is possible in certain rings to construct u, v such that uv = 1R 6= vu, so uv = 1R alone
would not suffice to consider u, v units; this subtlety does not concern us here.

4



of nonzero partial multiplicities. If an eigenvalue xj has geometric multiplicity
s, we denote the nonincreasing list of its partial multiplicities by m1, . . . ,ms with
m1 = κr,(j) ≥ · · · ≥ ms = κr+1−s,(j).

The matrix polynomial S(x) is called the Smith canonical form of P (x), and
it is uniquely determined by P (x) (unlike U(x) and V (x)).

Theorem 2.4 (Local Smith form). Suppose that the partial multiplicities of µ ∈ F
for a certain matrix polynomial P (x) ∈ F[x]m×n are κ1, . . . , κr (possibly allowing
some of them to be zero). Then, there exist two regular matrix polynomials
A(x) ∈ F[x]m×m, B(x) ∈ F[x]n×n such that detA(µ) detB(µ) 6= 0 and

D(x) = A−1(x)P (x)B−1(x) =



(x− µ)κ1 0 . . . 0 . . . 0
0 (x− µ)κ2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . (x− µ)κr . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . 0


.

The matrix polynomial D(x) is uniquely determined by P (x) and is called the local
Smith form of P (x) at µ.

For ease of notation and terminology, given a matrix A with elements in a (not
necessarily algebraically closed) field K we define spanA as the subspace of all
the vectors that can be formed as linear combinations over K of the columns of A,
and kerA as the set of all vectors whose image under the linear map represented
by A is the zero vector. Similarly, if A has full column rank, we say that A is a
basis of spanA.

Next, we recall the notions of minimal bases and minimal indices [10]

Definition 2.5 (Minimal bases and minimal indices). A matrix polynomial
M(x) ∈ F[x]n×p of normal rank p is called a minimal basis if the sum of the degrees
of its columns (sometimes called its order) is minimal among all polynomial bases
of spanM(x) ⊆ F(x)p.

It is proved in [10] that the degrees of the columns of a minimal basis depend
only on the subspace spanM(x). A minimal basis such that the degrees of its
columns are non-decreasing is called an ordered minimal basis [20]. Moreover,

Definition 2.6. If M(x) is a minimal basis and spanM(x) = kerP (x) for some
P (x) ∈ F[x]m×n, we say that M(x) is a minimal basis for P (x). The degrees of
the columns of any minimal basis of P (x) are called the (right) minimal indices
of P (x).

Minimal bases have the important property that the equationM(x)v(x) = b(x),
for any polynomial vector right hand side b(x), always admits a polynomial solution
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v(x) [10, Main Theorem]. Iin other words, a minimal basis M(x), as a matrix,
is left invertible over the ring F[x]; in the following we will often use this result
without further justification.

2.2 Root polynomials
We now recall some preliminary definitions and basic results, first discussed in [17],
which are useful for the theory of root polynomials. In Definition 2.7 we follow
the conventon that spanM = {0} ⊂ Fn for any empty matrix M ∈ Fn×0.

Definition 2.7. Let M(x) ∈ F[x]n×p be a minimal basis for P (x) ∈ F[x]m×n, and
µ ∈ F. Then, kerµ P (x) := spanM(µ).

Lemma 2.8. The definition of kerµ P (x) is independent of the particular choice
of a minimal basis M(x).

Proof. Let N(x) be any other minimal basis of P (x), and write N(x) = M(x)T (x).
Hence, N(µ) = M(µ)T (µ). By [20, Lemma 3.6] T (µ) is manifestly invertible for
any µ, and hence, N(µ) has full column rank. Thus, its columns span the same
subspace as those of M(µ).

Lemma 2.9. v ∈ kerµ P (x) ⊆ Fn ⇔ ∃w(x) ∈ F[x]n : P (x)w(x) = 0 and
w(µ) = v.

Proof. Let M(x) be a minimal basis of kerP (x). Then one implication is obvious
because there exists a polynomial vector c(x) such that w(x) = M(x)c(x), and
hence v = M(µ)c(µ).

Suppose now v = M(µ)c for some constant vector c, and define w(x) = M(x)c
to conclude the proof.

Lemma 2.10. kerµ P (x) ⊆ kerP (µ), and equality holds if and only if µ is not a
finite eigenvalue of P (x).

Proof. P (x)M(x) = 0 ⇒ P (µ)M(µ) = 0 shows the first claim. To prove the
second, let S(x) be the Smith form of P (x). Observe that p = dim kerµ P (x) is
the number of zero columns of S(x), whereas p+ s = dim kerP (µ) is the number
of zero columns of S(µ). Hence, s = 0, i.e., the two dimensions coincide, if and
only if µ is not a root of any nonzero invariant polynomial of P (x). The latter
property is equivalent to being a finite eigenvalue of P (x).

Definition 2.11 is central to this paper. It was given in [17, Sec. 8] and
generalizes the definition of root polynomial given in [11, Ch. 1] for the regular
case, i.e., p = 0 and kerµ P (x) = {0} for all µ ∈ F.

Definition 2.11 (Root polynomials). The polynomial vector r(x) ∈ F[x]n is a
root polynomial of order ` ≥ 1 at µ ∈ F for P (x) ∈ F[x]m×n if the following
conditions hold:
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1. r(µ) 6∈ kerµ P (x);

2. P (x)r(x) = (x− µ)`w(x) for some w(x) ∈ F[x]m satisfying w(µ) 6= 0.

Proposition 2.12. Let P (x) ∈ F[x]m×n. Then there exists a root polynomial for
P (x) at µ if and only if µ is a finite eigenvalue of P (x).

Proof. Suppose that µ is not an eigenvalue of P (x), and let r(x) ∈ F[x]n satisfy
P (x)r(x) = (x − µ)`w(x) for some ` ≥ 1. Then P (µ)r(µ) = 0 and hence
r(µ) ∈ kerP (µ) = kerµ P (x) by Lemma 2.10. Hence, no polynomial vector can
simultaneously satisfy the two conditions in Definition 2.11.

Conversely suppose that µ is an eigenvalue of P (x), and let r ∈ Fn be
such that r ∈ kerP (µ) but r 6∈ kerµ P (x). Note that P (x)r 6= 0, or otherwise
r ∈ spanM(x), implying r ∈ kerµ P (x). Hence there is a positive integer ` such
that P (x)r = (x− µ)`w(x) for some w(x) ∈ F[x]m, w(µ) 6= 0.

Definition 2.13. LetM(x) ∈ F[x]n×p be a right minimal basis of P (x) ∈ F[x]m×n.
The vectors r1(x), . . . , rs(x) ∈ F[x]n are a µ-independent set of root polynomials
at µ for P (x) if ri(x) is a root polynomial at µ for P (x) for each i = 1, . . . , s, and
the matrix [

M(µ) r1(µ) . . . rs(µ)
]

has full column rank.

Note that Definition 2.13 does not depend on the particular choice of a right
minimal basis M(x), since given another basis N(x) = M(x)T (x), for some
unimodular [20, Lemma 3.6] T (x) ∈ F[x]p×p, one has that

[
N(µ) r1(µ) . . . rs(µ)

]
=
[
M(µ) r1(µ) . . . rs(µ)

] [T (µ)
Is

]
,

and the rightmost matrix in the above equality is necessarily nonsingular.

Remark 2.14. We take the chance to correct an imprecise statement in [17],
where Definition 2.13 is mistakenly given without including the columns of M(µ).
We note that, in spite of the unfortunate misprint, the correct definition is
implicitly used (and, in fact, needed), in the proof of [17, Proposition 8.2].

Definition 2.15. Let M(x) ∈ F[x]n×p be a right minimal basis of a matrix
polynomial P (x) ∈ F[x]m×n. The vectors r1(x), . . . , rs(x) ∈ F[x]n are a complete
set of root polynomials at µ for P (x) if they are µ-independent and there does
not exist any set of s+ 1 root polynomials at µ for P (x), say ti(x), such that the
matrix [

M(µ) t1(µ) . . . ts+1(µ)
]

has full column rank.
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Proposition 2.16. Let M(x) ∈ F[x]n×p be a right minimal basis of a matrix
polynomial P (x) ∈ F[x]m×n. The polynomial vectors r1(x), . . . , rs(x) ∈ F[x]n are
a complete set of root polynomials at µ for P (x) if and only if the columns of the
matrix

N =
[
M(µ) r1(µ) . . . rs(µ)

]
form a basis for kerP (µ).

Proof. Observe that, if {ri(x)}si=1 are a complete set of root polynomials, then
P (µ)N = 0, by definition of minimal basis and of root polynomial. By Defini-
tion 2.13, the matrix N has full column rank. It remains to argue that its columns
form a basis of kerP (µ): suppose they do not. Then, we can complete them to
a basis, i.e., there exists a matrix X such that N̂ =

[
N X

]
, N̂ has full column

rank, and P (µ)N̂ = 0⇒ P (µ)X = 0. Let v be any column of X: then P (µ)v = 0,
but P (x)v 6= 0 since v 6∈ spanM(x). Hence, v is a root polynomial for P (x) at µ,
and the set v, r1(x), . . . , rs(x) is µ-independent, contradicting Definition 2.15.

Conversely, assume that completeness does not hold. Then, there exists a
certain matrix N̂ , with full column rank and (dim kerP (x) + s+ 1) columns, such
that P (µ)N̂ = 0. It follows that dim kerP (µ) > dim kerP (x) + s, and hence, the
columns of N cannot be a basis.

Definition 2.17. Let M(x) ∈ F[x]n×p be a right minimal basis of a matrix
polynomial P (x) ∈ F[x]m×n. The vectors r1(x), . . . , rs(x) ∈ F[x]n are a maximal
set of root polynomials at µ for P (x) if they are complete and their orders as root
polynomials for P (x), say, `1 ≥ · · · ≥ `s > 0, satisfy the following property: for all
j = 1, . . . , s, there is no root polynomial r̂(x) of order ` > `j such that the matrix[

M(µ) r1(µ) . . . rj−1(µ) r̂(µ)
]

has full column rank.

2.3 Root polynomials, quotient spaces, and a definition
of eigenvectors and eigenspaces for singular matrix
polynomials

The ideas that lead to Definition 2.11 are intimately related to the concept
of a quotient space. This subsection explains how and it has a slightly more
abstract-algebraic spirit.

We start by recalling the notion of quotient spaces. For any linear subspace
V ⊆ Fn, we consider the equivalence relation on Fn

∀ x, y ∈ Fn, x ∼ y ⇔ x− y ∈ V.

Then the quotient space Fn/V is defined as the set of equivalence classes

∀ x ∈ Fn, [x] := {v ∈ Fn : v ∼ x}.
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A quotient space can be given a vector space structure over F simply by defining

∀ x ∈ Fn, ∀ α ∈ F, α[x] := [αx], [x] + [y] := [x+ y].

If V is an invariant subspace of some linear endomorphism of Fn, say, A, then
x ∼ y ⇒ Ax ∼ Ay. Hence, it is consistent to define and write A[x] := [Ax].

Take now V = kerµ P (x). In this setting, asking that, for a root polynomial
r(x), r(µ) 6∈ kerµ P (x), is equivalent to imposing [r(µ)] 6= [0], which is the natural
extension to the singular case of the condition r(µ) 6= 0 for a regular P (x) (i.e.,
for kerµ P (x) = {0}).

Remark 2.18. Note that by Lemma 2.9

[r(µ)]Fn/ kerµ P (x) 6= [0]Fn/ kerµ P (x) ⇒ [r(x)]F(x)n/ kerP (x) 6= [0]F(x)n/ kerP (x).

By the first isomorphism theorem, F(x)n/ kerP (x) is isomorphic to the row space
of P (x).

Suppose for now, and for simplicity of exposition, that the eigenvalue µ has
geometric multiplicity 1. With this assumption, for a regular P (x), an eigenvector
v ∈ Fn(= Fn/{0} = Fn/ kerµ P (x)) is defined uniquely up to a nonzero scalar. For
a singular P (x), we claim that our framework also naturally leads to an eigenvector
which is uniquely defined up to a nonzero scalar, except that the “natural” space
to define the eigenvectors is equivalence classes in the above defined the quotient
space: [v] ∈ Fn/ kerµ P (x). Note that kerµ P (x) is an invariant subspace for P (µ).

Definition 2.19. If µ is an eigenvalue of P (x), we say that [v] ∈ Fn/ kerµ P (x)
is an eigenvector associated with the eigenvalue µ if

P (µ)[v] = [0], [v] 6= [0].

It is immediate to check that, if r(x) is a root polynomial at µ for P (x), then
[r(µ)] is an eigenvector in the above sense. Conversely, if [v] is an eigenvector,
then there is a root polynomial such that r(µ) = v, e.g., r(x) = v. To show
consistency of the theory, let q(x) be any other root polynomial at µ for P (x); we
must verify that it holds [q(µ)] = α[r(µ)] for some 0 6= α ∈ F. The clue is that,
by Proposition 2.16, for any M(x) minimal basis of P (x), the matrices[

M(µ) r(µ)
]
,

[
M(µ) q(µ)

]
are both a basis for kerP (µ). This observation implies that

[
M(µ) q(µ)

]
=
[
M(µ) r(µ)

] [Ip v
0 α

]

for some v ∈ Fp, 0 6= α ∈ F. Hence,

q(µ) = M(µ)v + αr(µ)⇔ [q(µ)] = α[r(µ)].
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These ideas can be extended to the case of eigenvalues of geometric multiplicity
s > 1; namely, Definition 2.19 still makes sense (hence why have not specified
there that the geometric mulitplicity of µ should be 1). Moreover, one can defined
eigenspaces as span V where V is an n × s matrix whose columns are linearly
independent (over F) equivalence classes in Fn/ kerµ P (x). Similarly as above,
one can easily check that any other matrix W whose columns are a basis for the
same eigenspace can be written as W = V A for some invertible matrix A ∈ Fs×s.
Moreover, an eigenspace can be constructed starting from any complete set of root
polynomials, and conversely a complete set of root polynomials can be constructed
starting from the columns of a basis for the eigenspace.

3 Existence of maximal sets of root polynomials,
and correspondence with partial multiplicities

We start by showing that any matrix polynomial in local Smith form at µ admits
a maximal set of root polynomials at µ.

Theorem 3.1. Let S(x) ∈ F[x]m×n be in local Smith form at µ ∈ F. Then,
denoting by r the normal rank of S(x) and by s the geometric multiplicity of µ as
an eigenvalue, the s vectors

er, er−1, . . . , er−s+1,

where ei is the ith vector of the canonical basis of Fn, are a maximal set of
root polynomials at µ for S(x). Moreover, their orders are the nonzero partial
multiplicities of µ as an eigenvalue of S(x).

Proof. It suffices to prove the statement for the case where µ is an eigenvalue, as
otherwise s = 0 and there is nothing to prove.

By assumption, S(x) is diagonal and S(x)ii = 0 if and only if i > r. Hence,
a minimal basis for S(x) is M(x) = M(µ) =

[
er+1 . . . en

]
. Moreover, still

by assumption, S(µ)ii = 0 if and only if i > r − s. Therefore, the vectors
er, er−1, . . . , er−s+1 are all root polynomials at µ for P (x), and by a simple direct
computation it can be seen that their orders are the nonzero partial multiplicites
of µ as a finite eigenvalue of S(x). Further, they are manifestly µ-independent,
as the matrix N =

[
er+1 . . . en er . . . er−s+1

]
is just a column permutation

of the matrix
[
0r−s×n−r+s
In−r+s

]
. They are a complete set by Proposition 2.16, since

S(µ)N = 0 and by assumption dim kerP (µ) = n− r + s.
It remains to argue that they are maximal. Suppose they are not . Then, for

some j ≤ s, there exists a certain root polynomial r̂(x) of order ` > `j such that
er, . . . , er−j+2, r̂(x) are µ-independent. We deduce that at least one of the first
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r − j + 1 elements of r̂(µ) is nonzero. Expanding r̂(x) and S(x) in a power series
in (x− µ), it is easily seen that ` is bounded above by the minimal exponent κi
of Sii(x) = (x− µ)κi , where the minimum is taken over all the values of i such
that r̂(µ)i 6= 0. Hence, ` ≤ `j, leading to a contradiction.

The following results appeared in [17, 18] and are key for arguing that a
maximal set of root polynomials exists for any matrix polynomial. We denote by
adjP (x) the adjugate of a square matrix polynomial P (x). Suppose that A(x)
and B(x) are square matrix polynomials, and Q(x) = A(x)P (x)B(x). For the
proof of the next result the following equations, whose proof is immediate, will be
useful:

Q(x) adjB(x) = A(x)P (x)B(x) adjB(x) = detB(x)A(x)P (x);
adjA(x)Q(x) = adjA(x)A(x)P (x)B(x) = detA(x)P (x)B(x).

Proposition 3.2. Let P (x), Q(x) ∈ F[x]m×n and suppose that Q(x) = A(x)P (x)B(x)
for some A(x) ∈ F[x]m×m and B(x) ∈ F[x]n×n such that detA(µ) detB(µ) 6= 0.
Then:

• if r(x) is a root polynomial for Q(x) at µ of order `, then B(x)r(x) is a root
polynomial for P (x) at µ of the same order;

• if q(x) is a root polynomial for P (x) at µ of order `, then adjB(x)q(x) is a
root polynomial for Q(x) at µ of the same order;

Proof. Suppose first that r(x) is a root polynomial at µ for Q(x). Note that
Q(x)r(x) = (x−µ)`w(x), w(µ) 6= 0, implies P (x)B(x)r(x) = (x−µ)`A−1(x)w(x).
Observe that the right hand side must be polynomial, since the left hand side
is. Hence, either A−1(x)w(x) is polynomial or it has a pole at x = µ. Yet,
the latter case is not possible, since detA(µ) 6= 0 and w(x) is polynomial. Ob-
serve further that A−1(µ)w(µ) 6= 0. Finally, suppose B(µ)r(µ) ∈ kerµ P (x).
Then by Lemma 2.9 ∃v(x) : v(µ) = B(µ)r(µ) and P (x)v(x) = 0, implying
Q(x)[adjB(x)v(x)] = detB(x)A(x)P (x)v(x) = 0: a contradiction, because
adjB(µ)v(µ) = detB(µ)r(µ), which is a nonzero scalar multiple of r(µ) and
hence cannot belong to kerµQ(x).

Conversely, let q(x) be a root polynomial at µ for P (x). Then, P (x)q(x) =
(x−µ)`w(x), w(µ) 6= 0 yields Q(x) adjB(x)q(x) = (x−µ)` detB(x)A(x)w(x), and
detB(µ)A(µ)w(µ) 6= 0 because A(µ) and B(µ) are nonsingular by assumption.
To conclude the proof suppose that adjB(µ)q(µ) ∈ kerµQ(x). Using Lemma 2.9,
∃v(x) : v(µ) = adjB(µ)q(µ) and Q(x)v(x) = 0. Thus, P (x)[detA(x)B(x)v(x)] =
adjA(x)Q(x)v(x) = 0. The latter equation is absurd, because detA(µ)B(µ)v(µ) =
detA(µ) detB(µ)q(µ), which, being a nonzero scalar multiple of q(µ), cannot
belong to kerµ P (x).
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Lemma 3.3. Let P (x), Q(x) ∈ F[x]m×n and suppose that Q(x) = A(x)P (x)B(x)
for some A(x) ∈ F[x]m×m and B(x) ∈ F[x]n×n such that detA(µ) detB(µ) 6= 0.
Let M(x) be a minimal basis for P (x) and let N(x) be a minimal basis for Q(x).
Then kerµ P (x) = spanM(µ) = spanB(µ)N(µ), and kerµQ(x) = spanN(µ) =
span adjB(µ)M(µ).

Proof. The nonsingularity over the field F(x) of both B(x) and A(x) implies
dim kerP (x) = dim kerQ(x) = dim kerµ P (x) = dim kerµQ(x). Moreover, mani-
festly B(x)N(x) is a polynomial basis for kerP (x) and adjB(x)M(x) is a poly-
nomial basis for kerQ(x). However, this does not directly imply the statement
because neither of those bases is necessarily minimal.

However, changing bases we have B(x)N(x) = M(x)C(x) and adjB(x)M(x) =
N(x)D(x) for some square, invertible, and polynomial [10, Main Theorem] ma-
trices C(x), D(x). Hence span adjB(µ)M(µ) ⊆ kerµQ(x) and spanB(µ)N(µ) ⊆
kerµ P (x). ButB(µ) is invertible, and hence rank adjB(µ)M(µ) = rankB(µ)N(µ) =
dim kerµ P (x) = dim kerµQ(x), concluding the proof.

Theorem 3.4. Let P (x), Q(x) ∈ F[x]m×n and suppose that Q(x) = A(x)P (x)B(x)
for some A(x) ∈ F[x]m×m and B(x) ∈ F[x]n×n. Assume further that detA(µ) detB(µ) 6=
0. Then:

• if r1(x), . . . , rs(x) are a maximal (resp., complete, µ-independent) set of
root polynomials at µ for Q(x), with orders `1 ≥ · · · ≥ `s > 0, then
B(x)r1(x), . . . , B(x)rs(x) are a maximal (resp., complete, µ-independent)
set of root polynomials at µ for P (x), with the same orders;

• if q1(x), . . . , qs(x) are a maximal (resp., complete, µ-independent) set of
root polynomials at µ for P (x), with orders `1 ≥ · · · ≥ `s > 0, then
adjB(x)q1(x), . . . , adjB(x)qs(x) are a maximal (resp., complete, µ-independent)
set of root polynomials at µ for Q(x), with the same orders.

Proof. The fact that the property of being a root polynomial with a certain
order is preserved by left and right multiplication by locally invertible matrix
polynomials has already been showed in Proposition 3.2. Now we proceed by
steps. Denote by M(x) (resp. N(x)) a minimal basis for P (x) (resp. Q(x)).

Suppose first {ri(x)}si=1 are µ-independent, and define

Y :=
[
N(µ) r1(µ) . . . rs(µ)

]
.

Note that by assumption Y has full column rank. Then

X =
[
M(µ) B(µ)r1(µ) . . . B(µ)rs(µ)

]
= B(µ)Y (C ⊕ Is)

for some invertible matrix C and using Lemma 3.3. Therefore, X has full column
rank implying by Definition 2.13 that {B(x)ri(x)}si=1 are µ-independent.
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Suppose further that {ri(x)}si=1 are complete. This is equivalent to as-
suming that kerQ(µ) = span Y . Observing that X has full colum rank and
that rankX = rank Y = dim kerQ(µ) = dim kerP (µ), it suffices to argue that
P (µ)X = P (µ)B(µ)Y (C ⊕ Is) = A(µ)−1Q(µ)Y (C ⊕ Is) = 0.

Finally, let us suppose that {ri(x)}si=1 are maximal, whereas {B(x)ri(x)}si=1
are not. Since in particular the former are complete, from the argument above
the latter are as well. Therefore, it must be the case that for some j ≤ s there
exists some r̂(x) that is a root polynomial of order ` > `j at µ for P (x) and such
that the matrix

X̂ =
[
M(µ) B(µ)r1(µ) . . . B(µ)rj−1(µ) r̂(µ)

]
has full column rank. However, by Proposition 3.2, adjB(x)r̂(x) is a root polyno-
mial for Q(x) at µ of order ` > `j. Using Lemma 3.3,

Ŷ =
[
N(µ) r1(µ) . . . rj−1(µ) adjB(µ)r̂(µ)

]
= adjB(µ)

detB(µ)X̂(D⊕Ij−1⊕detB(µ))

for some square invertible matrix D. This implies that Ŷ has full column rank,
contradicting the maximality of {ri(x)}si=1.

We omit the reverse implications as they can be shown analogously.

Theorem 3.1 and Theorem 3.4 together yield the following result.

Theorem 3.5. Let P (x) ∈ F[x]m×n. Then, denoting by s the geometric multiplic-
ity of µ as an eigenvalue of P (x), there exists a maximal set of root polynomials at
µ for P (x), say r1(x), . . . , rs(x), such that their orders are precisely the nonzero
partial multiplicities of µ as an eigenvalue of P (x).

Proof. The proof is constructive: let D(x) be the local Smith form at µ of P (x),
so that P (x) = A(x)D(x)B(x) for some matrix polynomials of appropriate size
and such that detA(µ) detB(µ) 6= 0. Then, by Theorem 3.1 er, er−1, . . . , er−s+1
are a maximal set of root polynomial at µ for D(x). Hence, by Theorem 3.4,
adjB(x)er, adjB(x)er−1, . . . , adjB(x)er−s+1 are a maximal set of root polynomials
at µ for P (x), and by Proposition 3.2 and Theorem 3.1 their orders are the partial
multiplicities of the eigenvalue µ of P (x).

4 Extremality properties of maximal sets of root
polynomials

Theorem 4.1. Let P (x) ∈ F[x]m×n and µ ∈ F be one of its finite eigenvalues.
Then
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1. all complete sets of root polynomials of P (x) at µ have the same cardinality:
in particular, all maximal sets of root polynomials of P (x) have the same
cardinality, which we call s;

2. all maximal sets of root polynomials of P (x) at µ have the same ordered list
of orders, that we call `1 ≥ · · · ≥ `s;

3. let r̃1(x), . . . , r̃s(x) be a complete set of root polynomials for P (x) at µ with
orders κ1 ≥ · · · ≥ κs: then

3.1 `i ≥ κi, i = 1, . . . s;
3.2 r̃1(x), . . . , r̃s(x) is a maximal set of root polynomials for P (x) at µ ⇔

`i = κi, i = 1, . . . , s;
3.3 r̃1(x), . . . , r̃s(x) is a maximal set of root polynomials for P (x) at µ ⇔∑

i `i = ∑
i κi.

Proof. 1. It is an immediate corollary of Proposition 2.16.

2. Let {ri(x)}si=1 and {ti(x)}si=1 be two maximal set of root polynomials at µ for
P (x), with orders, resp., `1 ≥ · · · ≥ `s and ρ1 ≥ · · · ≥ ρs. By Definition 2.17,
there is no root polynomials at µ for P (x) of order larger than `1, nor there
is one of order larger than ρ1. Hence, `1 = ρ1.
Now we proceed by induction. Assume that `i = ρi for i = 1, . . . , j < s,
and suppose that `j+1 6= ρj+1. Then, without loss of generality, let
`j+1 > ρj+1. Let M(x) be a minimal basis for P (x) and denote the
columns of M(µ) by u1, . . . , up. Again by Definition 2.17, the above im-
plies that u1, . . . , up, t1(µ), . . . , tj(µ), rk(µ) are linearly dependent for all
k ≤ j+ 1, since `k ≥ `j+1 > ρj+1. Therefore, u1, . . . , up, r1(µ), . . . , rj+1(µ) ∈
span{u1, . . . , up, t1(µ), . . . , tj(µ)}. Hence, there are p + j + 1 linearly in-
dependent vectors that all lie in a subspace of dimension j + p, which is
absurd.

3.1 Let {ri(x)}si=1 be a maximal set of root polynomials at µ for P (x), listed by
nonincreasing order `i. By Definition 2.17, there is no root polynomials at µ
for P (x) of order larger than `1, implying `1 ≥ κ1. Now by induction suppose
that `i ≥ κi for i = 1, . . . , j, but `j < κj . Then u1, . . . , up, r̃1(µ), . . . , r̃j(µ) ∈
span{u1, . . . , up, r1(µ), . . . , rj−1(µ)}, as if not some r̂i(x), i ≤ j, may be
picked to contradict Definition 2.17 showing that r1(x), . . . , rs(x) are not
maximal. Then again we have j + p linearly independent vectors lying in a
subspace of dimension j + p− 1: a contradiction.

3.2 Again, let {ri(x)}si=1 be a maximal set of root polynomials at µ for P (x),
listed by nonincreasing order `i. One implication is immediate by item 2.
Suppose now that `i = κi for all i, but{r̃i(x)}si=1 are not a maximal set. Since
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they are a complete set, it must happen that there exists a µ-independent set
of root polynomials r̃1(x), . . . , r̃j(x), r̂(x) of orders `1, . . . , `j, ` with ` > `j+1.
But in order not to contradict maximality of {ri(x)}si=1, it must be that
u1, . . . , up, r̃1(µ), r̃j(µ), r̂(µ) ∈ span{u1, . . . , up, r1(µ), . . . , rj(µ)}, and again
we get to the contradicting conclusion that p+ j + 1 linearly independent
vectors all lie in a subspace of dimesnion p+ j.

3.3 Again, one implication is trivial. Now suppose that ∑i `i = ∑
i κi. There

are two cases. If `i = κi for all i, we can use item 3.2; otherwise, there exists
at least one j such that κj > `j. But this is impossible because of item 2,
concluding the proof.

We deduce that the orders of a maximal set of root polynomials at µ for P (x)
are precisely the nonzero partial multiplicites of µ as an eigenvalue of P (x).

Theorem 4.2. Let P (x) ∈ F[x]m×n have an eigenvalue µ with nonzero partial
multiplicities m1 ≥ · · · ≥ ms. Then, any maximal set of root polynomials at µ for
P (x) have orders m1, . . . ,ms.

Proof. It follows from Theorem 3.5 and Theorem 4.1.

5 Quotienting the terms of degree ` or higher
It turns out that a root polynomial of order ` is in fact defined up to an additive
term of the form (x− µ)`w(x) where w(x) ∈ F[x]n. More formally, we may state
that the natural ring where the entries a root polynomial of order ` should be
“naturally” defined is F[x]/〈x`〉, where 〈p(x)〉 is the ideal generated by p(x).

Proposition 5.1. Let P (x) ∈ F[x]m×n. If v(x) is any root polynomial of order `
at µ for P (x) then v̂(x) := v(x) + (x− µ)`w(x) (for any vector polynomial w(x))
is a root polynomia at µ for P (x)l of order ≥ `.

Proof. Observe that P (x)v̂(x) = (x − µ)`(a(x) + P (x)w(x)), with P (x)v(x) =
(x− µ)`a(x). Furthermore, v̂(µ) = v(µ), hence the former is in kerµ P (x) if and
only if the latter is. Moreover, a(x) +P (x)w(x) 6≡ 0, as otherwise v̂(x) ∈ kerP (x),
implying v̂(µ) = v(µ) ∈ kerµ P (x).

Proposition 5.1 says that the operation of adding a term of the form (x−µ)`w(x)
to a root polynomial of order ` cannot decrease the order. It does not, however,
specify whether the order increases or remains equal. It turns out that both
situation are possible, as illustrated below.
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Example 5.2. Let

P (x) =


1 0 0 0
0 x2 0 0
0 0 x5 0
0 0 0 0

 .

It is easy to check that r1(x) =
[
0 0 1 0

]T
is a root polynomial of order 5 at 0;

note that

P (x)r1(x) + P (x)x5


w1(x)
w2(x)
w3(x)
w4(x)

 = x5


w1(x)
x2w2(x)

1 + x5w3(x)
0

 ,
showing that the order of r1(x) +x5w(x) must be equal to 5 for any w(x) ∈ F[x]4.
On the other hand let r2(x) =

[
x 1 0 0

]T
and w(x) =

[
−1 0 0 0

]T
, then

r2(x) is a root polynomial of order 1 but r2(x) + xw(x) is a root polynomial of
order 2 > 1.

We now turn to illustrating how the quotienting operation of Proposition 5.1
acts on set of root polynomials.

Theorem 5.3. Let r1(x), . . . , rs(x) be root polynomials at µ for P (x) having
orders `1 ≥ . . . `s, and write

ri(x) =
di∑
j=0

vi,j(x− µ)j.

Defining

qi(x) =
`i−1∑
j=0

vi,j(x− µ)j

(where vi,j = 0 for all j > di, i.e., qi(x) = ri(x), if di ≤ `i − 1), it holds that

1. r1(x), . . . , rs(x) are a µ-independent set of roots polynomials at µ if and only
if q1(x), . . . , qs(x) are;

2. r1(x), . . . , rs(x) are a complete set of roots polynomials at µ if and only if
q1(x), . . . , qs(x) are;

3. r1(x), . . . , rs(x) are a maximal set of roots polynomials at µ if and only if
q1(x), . . . , qs(x) are.

Proof. 1. µ-independence is clearly preserved by adding terms of the form
(x− µ)`iwi(x) to each root polynomial. Indeed, it is a local property at µ,
i.e., it only depends on the 0th order coefficients ri(µ) = qi(µ) = vi,0.

2. It is a corollary of Proposition 2.16.
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3. Suppose that {ri(x)}si=1 are a maximal set, and denote the order of qi(x)
by κi. By Proposition 5.1, κi ≥ `i. On the other hand, {qi(x)}si=1 are a
complete set, because {ri(x)}si=1 are. Therefore, by item 3.1 in Theorem 4.1,
denoting by σ any permutation of {1, . . . , s} such that the orders of qσ(i)(x)
are listed in nonincreasing order, `i ≥ κσ(i) for all i. In particular, we have∑
i κσ(i) = ∑

i κi ≤
∑
i `i ≤

∑
i κi. Therefore,

∑
i κi = ∑

i `i, implying κi = `i
for all i, and by item 3.2 in Theorem 4.1, {qi(x)}si=1 are a maximal set.
The reverse implication can be proved analogously.

The results in this section suggest the following definition

Definition 5.4. A root polynomial of order `, say, r(x) ∈ F[x]n, is said to be
minimal if deg r(x) < `.

The polynomial vectors r1(x), . . . , rs(x) ∈ F[x]n are a minimaximal set of root
polynomials at µ for P (x) if they are maximal and minimal, i.e., they are a
maximal set and they satisfy

deg ri(x) < `i ∀ i

where `1 ≥ · · · ≥ `s are their orders.

6 Root polynomials at infinity
From now on, we formally set∞ := 1

0 where 1 ∈ F and 0 ∈ F are the zero elements
for, respectively, multiplication and addition within F. It turns out that the point
at infinity has relevance for the spectral theory of matrix polynomials [4, 14, 15,
16, 17], and this motivates a definition and an analysis of root polynomials at ∞.

Let P (x) = ∑g
i=0 Pix

i ∈ F[x]m×n have grade2 [15, 17] g, and define

revg P (x) =
g∑
i=0

Pg−ix
i = xgP (1/x).

Note that revg is involutory, i.e., revg revg P (x) ≡ P (x).

Definition 6.1 (Eigenvalues at infinity).

Lemma 6.2. Let P (x) ∈ F[x]m×n and g ≥ degP (x). Then revg P (x) = xg−degPA(x),
A(x) ∈ F[x]m×n, and A(0) = PdegP 6= 0.

2The grade is an integer, greater than or equal to the degree, attached to a polynomial (with
scalar, vector, or matrix coefficients); the partial multiplicities at infinity depend on the choice
of grade, and for this reason we speak about root polynomials at infinity for a pair (matrix
polynomial, grade). Although usually the grade coincides with the degree, in certain applications
this may not happen.
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Proof. Denote δ = g − degP ≥ 0. By definition, revg P (x) = ∑g
i=0 Pg−ix

i =
xδ
∑degP
i=0 PdegP−ix

i.

Definition 6.3. Let r(x) ∈ F[x]n be a polynomial vector of degree deg r(x).
Moreover, let P (x) ∈ F[x]m×n have grade g. We say that r(x) is a root polynomial
of order ` at infinity for the pair (P (x), g) if revdeg r r(x) is a root polynomial of
order ` at 0 for revg P (x).

Proposition 6.4. The polynomial vector r(x) is a root polynomial of order ` at
infinity for P (x) if and only if

1. degP (x)r(x) = g + deg r(x)− ` and

2. ρ 6∈ ker∞ P (x),

where ρ is the leading coefficient of r(x) and ker∞ P (x) ⊆ Fn is the subspace
spanned by the columns of the “high order coefficient matrix” [10] of any minimal
basis M(x) of P (x)

Proof. Suppose that r(x) is a root polynomial of order ` at infinity for P (x). By
Definition 6.3,

revg P (x) revdeg r r(x) = xdeg r+gP (1/x)r(1/x) = x`a(x), a(0) 6= 0.

By Lemma 6.2, the latter equation implies degP (x)r(x) = g + deg r(x) − `.
Conversely, assume that degP (x)r(x) = g + deg r(x)− `: again using Lemma 6.2,
we conclude that revg P (x) revdeg r r(x) = x`a(x) for some a(x) such that a(0) 6= 0.

To conclude the proof, note that by [17, Sections 6.1–6.2], rdeg r ∈ ker∞ P (x)⇔
revdeg r r(0) ∈ ker0 revg P (x).

For the following definitions, given any matrix polynomial P (x) ∈ F[x]m×n
with minimal basis M(x) we denote by Mh the "high order coefficient matrix" [10]
of M(x). Note that the latter is the same as the “columnwise reversal” of M(x)
evaluated at x = 0 [20].

Definition 6.5. Let M(x) be a right minimal basis of P (x). The vectors
r1(x), . . . , rs(x) ∈ F[x]n, having leading coefficients ρ1, . . . , ρs, are an∞-independent
set of root polynomials at ∞ for P (x) if ri(x) is a root polynomial at ∞ for P (x)
for each i = 1, . . . , s, and the matrix[

Mh ρ1 . . . ρs
]

has full column rank.

Definition 6.6. Let M(x) be a right minimal basis of P (x). The vectors
r1(x), . . . , rs(x) ∈ F[x]n, having leading coefficients ρ1, . . . , ρs, are a complete
set of root polynomials at ∞ for P (x) if they are ∞-independent and there does
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not exist any set of s+ 1 root polynomials at ∞ for P (x), say{ti(x)}s+1
i=1 , having

leading coefficients {τi}s+1
i=1 , such that the matrix[

Mh τ1 . . . τs+1
]

has full column rank.

Definition 6.7. Let M(x) be a right minimal basis of P (x). The vectors
r1(x), . . . , rs(x) ∈ F[x]n, having leading coefficients ρ1, . . . , ρs, are a maximal
set of root polynomials at ∞ for P (x) if they are complete and their orders as
root polynomials at infinity for P (x), say, `1 ≥ . . . `s > 0, satisfy the following
property: for all j = 1, . . . , s, there is no root polynomial at infinity r̂(x) of order
` > `j and leading coefficient ρ̂ such that the matrix[

Mh ρ1 . . . ρj−1 ρ̂
]

has full column rank.

Definition 6.8. The polynomial vectors r1(x), . . . , rs(x) ∈ F[x]n are a mini-
maximal set of root polynomials at ∞ for P (x) if they are maximal and they
satisfy

deg ri(x) < `i ∀ i

where `1 ≥ · · · ≥ `s are their orders.

When a matrix polynomial has infinite eigenvalues, and root polynomials at
infinity are brought into the pictures, one can prove results completely analogous
to those developed for finite eigenvalues (except that the notation gets more
complicated). We omit further details to keep the paper compact.

7 Behaviour under rational reparametrizations
In this section we study the root polynomials for the pair of matrix polynomials
P (x) ∈ F[x]m×n and Q(y) = [d(y)]gP (x(y)) where g is the grade [15, 17] of P (x)
and

x(y) = n(y)
d(y)

for some coprime polynomials n(y), d(y) ∈ F[y]. Note that Möbius transformations,
studied in [15], correspond to n(y) and d(y) both having grade 1.

Theorem 7.1. Let µ ∈ F be an eigenvalue of P (x) and let λ ∈ F be a solution of
multiplicity m of the algebraic equation µd(y) = n(y). Then,

r(x) =
dr∑
i=0

vi(x− µ)i
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is a root polynomial at µ for P (x) having order ` if and only if

q(y) = [d(y)]drr(x(y))

is a root polynomial at λ for Q(y) having order m`.

Proof. Observe that q(y) is a polynomial vector. Indeed, we get

q(y) =
dr∑
i=0

vi[d(y)]dr−i(n(y)− µd(y))i.

Since by assumption n(y)− µd(y) = (y − λ)mw(y) for some scalar polynomial
w(y), w(λ) 6= 0, and using P (x)r(x) = (x− µ)`a(x) for some polynomial vector
a(x), a(µ) 6= 0,

Q(y)q(y) = [d(y)]dr+gP (x(y))r(x(y)) = (y − λ)m`[w(y)]`[d(y)]dr+g−`a(x(y)). (1)

Now, since degP (x)r(x) ≤ dr + g, it must be deg a(x) ≤ g + dr − `, and
hence, w(y)`[d(y)]dr+g−`a(x(y)) is a polynomial vector. Furthermore, w(λ) 6= 0
by assumption, d(λ) 6= 0 as otherwise n(λ) = 0 contradicting coprimality, and
a(x(λ)) = a(µ) 6= 0.

It remains to show q(λ) 6∈ kerλQ(y). Note first that q(λ) = [d(λ)]drr(µ) 6= 0.
Let M(x) be a minimal basis for P (x) and denote its columns by ui(x), . . . , up(x).
Suppose further that deg ui(x) = βi. It is shown in [17, Section 6.1] that the matrix
N(y) whose columns are [d(y)]βiui(x(y)) is a minimal basis for Q(y). Suppose for
a contradiction that q(λ) = N(λ)c for some c ∈ Fp. Let

d =


d(λ)β1−dr

. . .

d(λ)βp−dr

 c.
Then, r(µ) = M(µ)d so that r(µ) ∈ kerµ P (x), thus concluding the proof of the
first implication.

Conversely, supose that r(x) is not a polynomial at µ for P (x) of order `. If it
is a root polynomial at µ for P (x) of order `′ 6= ` then q(y) is a root polynomial at
λ for Q(y) of order m`′ 6= m` by the first part of the proof. Hence, we may assume
that r(x) is not a root polynomial at µ for P (x), that is, either P (µ)r(µ) 6= 0 or
r(µ) ∈ kerµ P (x). If the former holds, then by (1) and using x(λ) = µ we deduce
that Q(λ)q(λ) 6= 0. If the latter holds, then we have that, for some c ∈ Fp and d
defined as above,

q(λ) = r(µ) = M(µ)d = N(λ)c.
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For a Möbius transformation, the equation n(y) = d(y)µ is linear. Hence,
when Theorem 7.1 is applied in this scenario, m ≡ 1 regardless of the value of µ.

We now show how sets of root polynomials behave under a rational reparametriza-
tion.

Theorem 7.2. Let µ ∈ F be an eigenvalue of P (x) and let λ ∈ F be a solution
of multiplicity m of the algebraic equation µd(y) = n(y). Suppose that, for
i = 1, . . . , s,

ri(x) =
di∑
j=0

vi(x− µ)i

are root polynomials at µ for P (x) having order `1 ≥ · · · ≥ `s. Then, defining

qi(y) = [d(y)]diri(x(y))

we have that:

1. r1, . . . rs are µ-independent if and only if q1, . . . , qs are λ-independent;

2. r1, . . . rs are complete if and only if q1, . . . , qs are complete;

3. r1, . . . rs are maximal if and only if q1, . . . , qs are maximal.

Proof. In the same notation as in the proof of Theorem 7.1,

[
N(λ) q1(λ) . . . qs(λ)

]
=
[
M(µ) r1(µ) . . . rs(µ)

]


d(λ)β1

. . .

d(λ)βp
d(λ)d1

. . .

d(λ)ds


,

and because d(λ) 6= 0 item 1 is proved.
To prove item 2, if the qi(λ) are not a complete set, then by the proof of

Proposition 2.16 we see that dim kerQ(λ) > s. This is a contradiction, because
by definition of Q(y) dim kerP (µ) = dim kerQ(λ) = s. The converse statement
can be shown similarly.

Finally, item 3 is a consequence of [17, Theorem 4.1] and of Theorem 4.2.

Analogous results hold for the cases µ = ∞, λ = ∞, or both. They can be
proved using a technique analogous to the strategy employed in [17] to deal with
infinite elementary divisors. We omit the details.
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8 Linearizations and recovery properties
The goal of this section is to illustrate how root polynomials can be used to obtain,
in a compact and unified way, the recovery of both minimal bases of singular
polynomials and Jordan chains of regular matrix polynomials.

Definition 8.1 (Linearization). A matrix polynomial of degree at most 1 L(x)
is called a linearization for P (x) ∈ F[x]m×n there exist k ∈ N and unimodular
matrix polynomials U(x) ∈ F[x](m+k)×(m+k) and V (x) ∈ F[x](n+k)×(n+k) such that

L(x) = U(x)
[
Ik 0
0 P (x)

]
V (x).

Lemma 8.2, Lemma 8.3, and Proposition 8.4 below are the basic tools that we
are going to use throughout this section.

Lemma 8.2. Let P (x) ∈ F[x]m×n and Q(x) =
[
Ik 0
0 P (x)

]
for some k ≥ 0. Then

N(x) is a minimal basis of Q(x) if and only if N(x) =
[

0
M(x)

]
where M(x) is

a minimal basis for P (x). Moreover, for any µ ∈ F, kerµQ(x) = span{
[
0
v

]
, v ∈

kerµ P (x)}.

Proof. Note that the second statement follows immediately from the first. To

prove the first statement, note that Q(x)
[
w(x)
v(x)

]
=
[

w(x)
P (x)v(x)

]
, from which it

easily follows that any basis for kerQ(x) is of the form B̂(x) =
[

0
B(x)

]
where

B(x) is a basis for kerP (x). To conclude the proof we can invoke any of the
characterizations of minimal bases from [10], e.g., a basis is minimal if and only if
F (µ) is full rank for all µ ∈ F and its higher order coefficient matrix is full rank
as well. It is therefore easy to see that B(x) is minimal if and only if B̂(x) is.

Lemma 8.3. Let P (x) ∈ F[x]m×n and Q(x) =
[
Ik 0
0 P (x)

]
for some k ≥ 0. If

w(x) =
[
ŵ(x)
w̃(x)

]
∈ F[x]k+n is a root polynomial at µ of order ` for Q(x), then:

1. ŵ(x) = (x− µ)`â(x) for some polynomial vector â(x);

2. w̃(x) is a root polynomial at µ of order `′ ≥ ` for P (x);

3. either a(µ) 6= 0, or w̃(x) is a root polynomial at µ for P (x) having order
exactly `, or both.
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Proof. By definition we have that, for some a(x) with a(µ) 6= 0,

(x− µ)`a(x) = Q(x)w(x) =
[

ŵ(x)
P (x)w̃(x)

]
= (x− µ)`

[
â(x)
ã(x)

]
,

where in the last step we have just partitioned a(x) appropriately. Thus, either
â(µ) 6= 0, or ã(µ) 6= 0, or both. This immediately proves the result (using also
Lemma 8.2).

Proposition 8.4. Let P (x) ∈ F[x]m×n and Q(x) =
[
Ik 0
0 P (x)

]
for some k ≥ 0.

Suppose r1(x), . . . , rs(x) are a maximal set of root polynomials at µ for Q(x) of
orders `1 ≥ · · · ≥ `s. Then

1. for all i = 1, . . . , s, ri(x) =
[
(x− µ)`iai(x)

r̃i(x)

]
for some polynomial vectors

a1(x), . . . , as(x);

2. r̃1(x), . . . , r̃s(x) is a maximal set of root polynomials at µ for P (x) of orders
`1 ≥ · · · ≥ `s.

Proof. 1. It follows from item 1 in Lemma 8.3.

2. From item 2 in Lemma 8.3, we know that r̃1(x), . . . , r̃s(x) is a set of root
polynomials at µ for P (x) of orders ˜̀i ≥ `i. They are µ-independent, by
applying Proposition 5.1 and Lemma 8.2. They are complete, by Proposi-
tion 2.16 and Lemma 8.2. Finally, since the partial multiplicities of µ as
an eigenvalue of Q(x) are the same as the partial multiplicites of µ as an
eigenvalue of P (x), by Theorem 4.2 and by the above, we get∑

i

˜̀
i ≤

∑
i

`i ≤
∑
i

˜̀
i,

and hence, equality holds. By items 3.2–3.3 in Theorem 4.1, r̃1(x), . . . , r̃s(x)
is a maximal set, and ˜̀

i = `i for all i = 1, . . . , s.

An important class of linearizations is given by “Fiedler pencils”, see, e.g., [5]
and the references cited therein. This approach to linearizing matrix polynomials
has originated in the paper [9], and has been generalized in different directions,
such as to rectangular matrix polynomials [6], to a wider class of pencils [1, 2]
as well as to nonmonomial bases [19]. To keep the paper compact, here we will
focus on the original class of Fiedler pencils in the monomial basis and for square
matrix polynomials, defined as in [5]. The statement of Theorem 8.5 allows for
the recovery of root polynomials of the linearized matrix polynomial from those of
a Fiedler pencil. It refers to the definition of the consecution-inversion structure
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of a fiedler pencil Fσ(x) [5, Definition 3.3], which is denoted by CISS(σ). Since
this definition requires a rather long and technical tour-de-force, we invite the
reader to refer to [5] for the details.
Theorem 8.5. Let P (x) ∈ F[x]n×n having grade g ≥ 2, and suppose that Fσ(x) is
the Fiedler pencil of P (x) associated with a bijection σ having CISS(σ)=(c1, i1, . . . , c`, i`).
Also, let us block partition any vector of size ng × 1 with g blocks of size n× 1.
Let r1(x), . . . , rs(x) be a maximal set of root polynomials at µ for Fσ(x), having
orders `1 ≥ · · · ≥ `s. For all j = 1, . . . , s denote by r̃j(x) the (g − c1)th block of
rj(x). Then, r̃1(x), . . . , r̃s(x) is a maximal set of root polynomials at µ for P (x),
having orders `1 ≥ · · · ≥ `s.
Proof. By [5, Corollary 4.7], two unimodular matrix polynomials U(x), V (x) such
that

U(x)Fσ(x)V (x) =
[
I(g−1)n 0

0 P (x)

]
=: Q(x)

are explicitly known. Moreover, if Vr(x) is the rightmost ng × n block of V (x),
and viewing Vr(x) partitioned as a g × 1 block vector with blocks of size n× n,
then Vr(x) has exactly one block equal to In, located at the block index (g− c1) [5,
Remark 5.4].

By Theorem 3.4, V −1(x)r1(x), . . . , V −1(x)rs(x) is a maximal set of root poly-
nomials at µ for Q(x) of orders `1 ≥ · · · ≥ `s. By Proposition 8.4, their bottom
blocks (say, r̂1(x), . . . , r̂s(x)) form a maximal set of root polynomials at µ for Q(x)
of the same orders, whereas their other blocks are of the form (x−µ)`iai(x). From
the observation above on the form of Vr(x), we have that for some polynomial
vector b(x) it holds

r̃j(x) = r̂j(x) + (x− µ)`jb(x),
which by Theorem 5.3 concludes the proof.
Remark 8.6. • Theorem 8.5 holds, in particular, for the first companion

linearization (taking c1 = 0) and for the second companion linearization
(taking c1 = g − 1).

• The result implies that the orders of rj(x) and r̃j(x) are equal, because the
partial multiplicities at µ of P (x) and Fσ(x) are.

• For regular matrix polynomials, the recovery result for root polynomials
yields a recovery result for Jordan chains.

A second important class of linearizations is given by the L1 and L2 linearization
spaces: see [14, Definition 3.1]. Again, for simplicity we focus on the case of the
monomial bases originally discussed in [14]. We note however that an extension to
nonmonomial bases is possible [16], and recovery properties for root polynomials
can be derived for other bases as well.

The next proposition follows from, and slightly improves, [4, Theorems 4.1
and 4.6].
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Proposition 8.7. Let P (x) = ∑g
i=0 Pix

i ∈ F[x]n×n. Let L(x) ∈ L1(P ) have a
nonzero right ansatz vector v ∈ Fg. Also let M ∈ GL(g,F) satisfy Mv = e1. Then,
there exists matrices Y ∈ Fn×n(g−1), Z ∈ Fn(g−1)×n(g−1) such that

L(x) = (M−1 ⊗ In)
[
In −Y
0 −Z

]
C1(x),

where

C1(x) = x


Pk

In
. . .

In

+


Pg−1 . . . P1 P0
−In

. . .

−In


denotes the first companion linearization of P (x). Moreover, if Z is nonsingular,
then L(x) is a strong linearization of P (x).

Similarly, let L(x) ∈ L2(P ) have a nonzero left ansatz vector w ∈ Fg. Also
let K ∈ GL(g,F) satisfy wTK = eT1 . Then, there exists matrices X ∈ Fn(g−1)×n,
Z ∈ Fn(g−1)×n(g−1) such that

L(x) = C2(x)
[
In 0
−X −Z

]
(K−1 ⊗ In),

where

C2(x) = x


Pk

In
. . .

In

+


Pk−1 −In
...

. . .

P1 −In
P0


is the second companion linearization of P (x). Moreover, if Z is nonsingular,
then L(x) is a strong linearization of P (x).

Proof. We only include the proof of the first statement as the second can be shown
analogously. By definition of L1(P ) and M it is readily seen that (M ⊗ In)L(x) ∈
L1(P ) with right ansatz vector e1. Hence, by [14, Theorem 3.5], there exist Y , Z,
of sizes as in the statement, satisfying

(M ⊗ In)L(x) = x

[
Pk −Y
0 −Z

]
+
[
Y +

[
Pk−1 . . . P1

]
P0

Z 0

]
=
[
In −Y
0 −Z

]
C1(x).

Hence, L(x) is strictly equivalent to C1(x) if and only if Z is nonsingular.

Remark 8.8. The property of Z being nonsingular in the statement of Proposi-
tion 8.7 is known as L(x) having full Z-rank.

Theorem 8.9. Let P (x) ∈ F[x]n×n have grade g ≥ 2. Also, let us block partition
any vector of size ng × 1 with g blocks of size n× 1.
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1. Let L(x) ∈ L1(P ) have full Z-rank, and let r1(x), . . . , rs(x) be a minimaximal
set of root polynomials at µ for L(x), having orders `1 ≥ · · · ≥ `s. For all
j = 1, . . . , s denote by r̃j(x) the gth block of rj(x). Then, r̃1(x), . . . , r̃s(x)
is a minimaximal set of root polynomials at µ for P (x), having orders
`1 ≥ · · · ≥ `s.

2. Let L(x) ∈ L2(P ) have full Z-rank and left ansatz vector w, and let
r1(x), . . . , rs(x) be a minimaximal set of root polynomials at µ for L(x),
having orders `1 ≥ · · · ≥ `s. Moreover, define W = wT ⊗ I and, for all
j = 1, . . . , s, r̃j(x) := Wrj(x). Then, r̃1(x), . . . , r̃s(x) is a minimaximal set
of root polynomials at µ for P (x), having orders `1 ≥ · · · ≥ `s.

Proof. 1. Let L(x) ∈ L1(P ) have full Z-rank. By Theorem 3.4, Proposition 8.7,
and Definition 5.4, we can easily see that {ri(x)}si=1 is a minimaximal set of
root polynomials at µ for C1(x), the first companion linearization of P (x).
The statement is therefore a corollary of Theorem 8.5.

2. Let L(x) ∈ L2(P ) have full Z-rank and left ansatz vector w. By The-
orem 3.4, Proposition 8.7, and Definition 5.4, we can easily see that[
In 0
−X −Z

]
(K−1⊗ In)r1(x), . . . ,

[
In 0
−X −Z

]
(K−1⊗ In)rs(x) is a minimax-

imal set of root polynomials at µ for C2(x), the second companion lin-
earization of P (x). Applying Theorem 8.5 we see that the first blocks of[
In 0
−X −Z

]
(K−1 ⊗ In)rj(x), j = 1, . . . , s, are a minimaximal set of root

polynomials of P (x). But these first blocks can be explicitly computed as[
In 0

]
(K−1 ⊗ In)rj(x) = Wrj(x),

where we have used the property wTK = e1 that holds by definition of K
(see the statement of Proposition 8.7).

We conclude this section by analyzing a third important class of linearizations
discussed in [8]: block Kronecker linearizations. Again, we focus on block Kro-
necker linearizations of square matrix polynomials for simplicity and to keep the
paper compact. A generalization to rectangular P (x) is not particularly difficult
(although it somewhat complicates the notation).

Theorem 8.10. Let P (x) ∈ F[x]n×n having grade g ≥ 2, and suppose that

L(x) =
[
M(x) K2(x)T
K1(x) 0

]
∈ F[x](η+ε+1)n×(η+ε+1)n

is a block Kronecker pencil [8, Definitions 3.1 and 5.1] and a linearization of
P (x). Suppose further that K1(x) has εn rows and K2(x) has ηn rows, where ε
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and η are defined as in [8, Section 5]. Also, let us block partition any vector of
size ng × 1 with g blocks of size n× 1. Let r1(x), . . . , rs(x) be a maximal set of
root polynomials at µ for L(x), having orders `1 ≥ · · · ≥ `s. For all j = 1, . . . , s
denote by r̃j(x) the (ε+ 1)th block of rj(x). Then, r̃1(x), . . . , r̃s(x) is a maximal
set of root polynomials at µ for P (x), having orders `1 ≥ · · · ≥ `s.

Proof. Using [8, Lemma 2.14] and [8, Remark 5.3], one can explicitly write down
unimodular matrix polynomials U(x) and V (x) such that

U(x)L(x)V (x) =
[
I(η+ε)n 0

0 P (x)

]
.

Moreover, denoting by Vr(x) the rightmost (η + ε+ 1)n× n block of V (x), and
partitioning Vr(x) as (η + ε+ 1) block vector with n× n blocks, then Vr(x) has
(at least) one block equal to In, located at the block index (ε+ 1). The result now
follows by an argument analogous to that in the proof of Theorem 8.5.

9 Dual pencils and root polynomials
The following definitions and basic results appear in [20] (for F = C, but their
extension to a generic algebraically closed field does not cause any issues) and are
also related to the pioneering work in [12, 13].

Definition 9.1 (Dual pencils). Two matrix polynomials of degree at most 1,
L(x) = L1x + L0 ∈ F[x]m×n and R(x) = R1x + R0 ∈ F[x]n×p, are called dual if
the following two conditions hold:

1. L1R0 = L0R1;

2. rank
[
L1 L0

]
+ rank

[
R1
R0

]
= 2n.

In this case we say that L(x) is a left dual of R(x) and that R(x) is a right dual
of L(x).

Definition 9.2 (Column-minimal matrix polynomials). The matrix polynomial
P (x) ∈ F[x]m×n is column-minimal if it does not have any zero right minimal
index, i.e., P (x)v 6= 0 for all v ∈ Fn.

Proposition 9.3. [20, Lemma 3.1] R(x) is a column-minimal right dual of L(x)
if and only if the columns of the matrix[

R1
R0

]

are a basis for ker
[
L0 −L1

]
.
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We now proceed to study how root polynomials change under the operation
of duality. We first focus on dual pairs L(x), R(x) where the right dual R(x) is
column-minimal.

Theorem 9.4. Let L(x) = L1x + L0 and let R(x) = R1x + R0 be a column-
minimal right dual of L(x). Moreover, let µ ∈ F be an eigenvalue of theirs. Also
let γ, δ ∈ F be such that δµ 6= γ and let Q(x) = Q1x + Q0 for some Q1, Q0
satisfying Q0R1 −Q1R0 = Ip. Then:

1. If r(x) = ∑`−1
j=0 rj(x− µ)j is a root polynomial of order ` at µ for R(x) then

w(x) := (γR1 + δR0)r(x) is a root polynomial of order ` at µ for L(x).

2. If r(x) = ∑`−1
j=0 rj(x− µ)j is a root polynomial of order ` at µ for L(x), then

w(x) := Q(x)r(x)− (x− µ)`Q1r`−1 is a root polynomial of order ` at µ for
R(x).

Proof. 1. Suppose that R(x)r(x) = (x− µ)`a, a = R1r`−1 6= 0. Then, we have

L(x)w(x) = L(x)(γR1+δR0)r(x) = (γL1+δL0)R(x)r(x) = (x−µ)`(γL1+δL0)a.

We claim that w(µ) = (γR1 + δR0)r(µ) 6∈ kerµ L(x). Indeed, otherwise
(γ − δµ)R1r(µ) = (γR1 + δR0)r(µ) = N(µ)c for some constant vector c,
where N(x) is a minimal basis for L(x). It is known [20, Theorem 3.9] that
Q(x)N(x) is a minimal basis for R(x). Hence, M(µ) = (Q0 + µQ1)N(µ),
and M(µ)c = (γ − δµ)(Q0 + µQ1)R1r(µ) = (γ − δµ)(r(µ) +Q1R(µ)r(µ)) =
(γ − δµ)r(µ), contradicting the assumption that r(x) is a root polynomial.
It remains to show that (γL1 +δL0)a 6= 0. Indeed, if not, then L(x)w(x) = 0,
and this leads to the same contradiction as above.

2. Suppose that L(x)r(x) = (x− µ)`a, a = L1r`−1 6= 0. Expanding L(x) and
r(x) in a power series in (x− µ), this is equivalent to

L1µr0 + L0r0 = 0,
L1r0 + L1µr1 + L0r1 = 0,

...

L1r`−2 + L1µr`−1 + L0r`−1 = 0.

But since R(x) is a column-minimal right dual of L(x), this implies that[
r0 r1 . . . r`−1
−µr0 −r0 − µr1 . . . −r`−2 − µr`−1

]
=
[
R1
R0

] [
w0 w1 . . . w`−1

]
(2)

for some constant vectors {wi}`−1
i=1 . Defining w(x) = ∑`−1

j=0 wj(x− µ)j, this
yields the equations r(x) = R1w(x) and (x − µ)`r`−1 − xr(x) = R0w(x).
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Hence, we see that R(x)w(x) = (x−µ)`r`−1. Note that r`−1 6= 0, due to the
linear independence of the columns of the matrices that bring a pencil to
its Kronecker canonical form. Moreover, premultiplying (2) by

[
Q0 −Q1

]
,

we see that

Q1µr0 +Q0r0 = w0,

Q1r0 +Q1µr1 +Q0r1 = w1,

...

Q1r`−2 +Q1µr`−1 +Q0r`−1 = w`−1,

that is to say Q(x)r(x)−Q1(x− µ)`r`−1 = w(x).
It remains to check that w0 6∈ kerµR(x). Suppose it does: then, w0 = M(µ)c
where M(x) is a minimal basis of R(x). But then r0 = R1M(µ)c, and since
R1M(x) is a minimal basis for L(x) [20, Theorem 3.8], this violates the
assumption that r(x) is a root polynomial.

Remark 9.5. If in item 1 of Theorem 9.4 one drops the assumption that r(x) has
degree at most `− 1, then it is not necessarily true that w(x) is a root polynomial
of order ` of L(x), but only that it is a root polynomial of order at least `. For an

example where the order increases take L(x) = R(x) =

x 1 0
0 x 0
0 0 1

, δ = 0, γ 6= 0,

and r(x) =

 1
−x
x

.
The very same comment holds for item 2 of the same Theorem. Again, taking

the same L(x), R(x), and r(x), define Q(x) =

1 0 0
0 1 0
0 −x −x

 to check that w(x)

may have order > ` if r(x) has degree higher than `− 1.

Theorem 9.6. Let L(x) = L1x + L0 and let R(x) = R1x + R0 be a column-
minimal right dual of L(x). Moreover, let µ an eigenvalue of theirs. Also let
γ, δ ∈ F be such that δµ 6= γ and let Q(x) = Q1x+Q0 for some Q1, Q0 satisfying
Q0R1 −Q1R0 = Ip. Then:

1. If r1(x), . . . , rs(x) is a minimaximal set at µ for R(x) then wj(x) := (γR1 +
δR0)rj(x), j = 1, . . . , s, is a minimaximal set at µ for L(x).

2. If r1(x), . . . , rs(x) is a minimaximal set at µ for L(x), then wj(x) :=
Q(x)rj(x)− (x− µ)`Q1rj,`−1 is a minimaximal set at µ for R(x).
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Proof. 1. LetM(x) be a minimal basis for R(x). We first prove µ-independence.
By assumption, the matrix X =

[
M(µ) r1(µ) . . . rs(µ)

]
has full column

rank. On the other hand, by [20, Theorem 3.8], a minimal basis for L(x) is
γR1+δR0
γ−δx M(x). Now, suppose that the matrix

Y =
[
γR1+δR0
γ−δµ M(µ) w1(µ) . . . ws(µ)

]
= ( 1

γ − δµ
⊕ I)(γR1 + δR0)X

does not have full colum rank. Then, a nonzero linear combination of the
columns of X, say Xc, is in ker(γR1 + δR0). We deduce that R(x)Xc =(
δx−γ
δµ−γR(µ) + x−µ

γ−δµ(γR1 + δR0)
)
Xc = 0, and hence, R(x) has a zero minimal

index, contradicting the assumption that it is column-minimal.
We next show completeness. Now suppose that the columns of X span
kerR(µ), but the columns of Y do not span kerL(µ). This contradicts [20,
Theorem 3.3], that guarantees that dim kerL(µ) = dim kerR(µ).
To show maximality, it suffices to note that the partial multiplicities at µ
of R(x) and L(x) coincide and that the orders of {ri(x)}si=1 and {wi(x)}si=1
coincide as well.
Finally, minimaximality follows from the fact that both rj(x) and wj(x)
have degree ≤ `j − 1.

2. Denote byM(x) a minimal basis orR(x). We start by showing µ-independence.
Suppose that the matrix X =

[
M(µ) w1(µ) . . . ws(µ)

]
does not have full

column rank, i.e., Xc = 0 for some nonzero constant vector c. By [20, Theo-
rem 3.8], a minimal basis for L(x) is γR1+δR0

γ−δx M(x). Let now Y = γR1+δR0
γ−δµ X.

The proof of Theorem 9.4 showed that (γR1 + δR0)wj(µ) = (γ − δµ)rj(µ),
and hence, Y = (γR1 + δR0)Xc = 0 a contradiction, since Y has full column
rank by the assumption that rj(x) are µ-independent.
We next show completeness. Suppose the columns of X do not span kerR(µ).
Since the columns of Y span kerL(µ), and by [20, Theorem 3.3], this is a
contradiction.
To show maximality, it suffices to note that the partial multiplicities at µ of
R(x) and L(x) coincide and that the orders of the rj(x) and wj(x) coincide
as well.
Finally, minimaximality follows from the fact that both rj(x) and wj(x)
have grade `j − 1.

To extend Theorem 9.4 and Theorem 9.6 to the case of a right dual which is
not column-minimial, we first need the following auxiliary results.
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Lemma 9.7. Let L(x) = L1x+L0 and R(x) = R1x+R0 be a right dual of L(x).

Suppose that
[
R̂1

R̂0

]
is a basis for the column space of

[
R1
R0

]
and let R̂(x) = R̂1x+R̂0.

Moreover, denote by B the full row rank matrix such that[
R̂1

R̂0

]
B =

[
R1
R0

]
,

let BR be any right inverse of B, and let C,K be such that
[
K BR

]
is square

and [
C
B

] [
K BR

]
= I.

Then:

1. R̂(x) is a column-minimal right dual of L(x);

2. if M(x) is a minimal basis for R̂(x), then
[
K BRM(x)

]
is a minimal basis

for R(x);

3. if N(x) is a minimal basis for R(x), then the matrix obtained by keeping
the nonzero columns of BN(x) is a minimal basis for R̂(x).

Proof. 1. We have L1R̂0 = L1R0B = L0R1B = L0R̂1 and

rank
[
R̂1

R̂0

]
= rank

[
R1
R0

]
.

2. Note first that R(x)K = R̂(x)BK = 0. If M(x) is a minimal basis for R̂(x),
then I ⊕M(x) is a minimal basis for

[
0 R̂(x)

]
= R(x)

[
K BR

]
which

in turn implies that
[
K BR

]
(I ⊕M(x)) =

[
K BRM(x)

]
is a basis for

kerR(x). It is known [7, 10, 20] that if A is invertible and M̃(x) is minimal
then AM̃(x) is also minimal, and this concludes the proof.

3. By reversing the final argument in the proof of item 2., we see that[
C
B

]
N(x) is a minimal basis for

[
0 R̂(x)

]
. By [20, Lemma 3.6] and

by the fact that clearly there exists an ordered minimal basis of the lat-

ter of the form I ⊕ Ñ(x), it must be that
[
CN(x)
BN(x)

]
=
[
T0 T̃ (x)
0 T̂ (x)

]
Π for

some square invertible matrix T0 and some permutation matrix Π. Hence,[
CN(x)
BN(x)

]
ΠT

[
T−1

0 −T−1
0 T̃ (x)

0 I

]
= I⊕ T̂ (x) is a basis for ker

[
0 R̂(x)

]
; and

again by [20, Lemma 3.6], it is minimal. It follows that T̂ (x) is a minimal
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basis for R̂(x). Moreover, from the argument above, we see that T̂ (x) is, up
to a permutation of its columns, precisely the matrix obtained by keeping
the nonzero columns of BN(x).

Theorem 9.8. Under the same assumptions, and with the same notations, of
Lemma 9.7:

1. If r̂(x) = ∑`−1
j=0 r̂j(x− µ)j is a root polynomial of order ` at µ for R̂(x) then

r(x) := BRr̂(x) is a root polynomial of order ` at µ for R(x).

2. If r(x) = ∑`−1
j=0 rj(x−µ)j is a root polynomial of order ` at µ for R(x), then

r̂(x) := Br(x) is a root polynomial of order ` at µ for R̂(x).

Proof. 1. By assumption, R̂(x)r̂(x) = (x−µ)`a(x), a(µ) 6= 0. Hence, R(x)r(x) =
R(x)BRr̂(x) = R̂(x)r̂(x) = (x− µ)`a(x). Assume now for a contradiction
that r(µ) ∈ kerµR(x) and let M(x) be a minimal basis for R̂(x), then

by Lemma 9.7 we have that, for some vector
[
c1
c2

]
, r̂(µ) = BBRr̂(µ) =

B(Kc1 +BRM(µ)c2) = M(µ)c2, a contradiction.

2. We know R(x)r(x) = (x − µ)`a(x), a(µ) 6= 0, which yields R̂(x)Br(x) =
R(x)r(x) = (x − µ)`a(x). Moreover, if M(x) is a minimal basis for R̂(x),
and denoting by z the number of zero right minimal indices of R(x) (so that
K has precisely z columns),

rank
[
K BRM(µ) r(µ)

]
= rank

[
Iz 0 Cr(µ)
0 M(µ) r̂(µ)

]
= z+rank

[
M(µ) r̂(µ)

]
,

concluding the proof.

Corollary 9.9. Let L(x) = L1x+L0 and let R(x) = R1x+R0 be a right dual of
L(x). Given any column-minimal right dual of L(x), say R̂(x), let the matrices
B,BR, K be defined as in Lemma 9.7, and let µ ∈ F be an eigenvalue of L(x), R(x)
and R̂(x). Also let γ, δ ∈ F be such that δµ 6= γ and let Q(x) = Q1x + Q0 for
some Q1, Q0 satisfying Q0R1 −Q1R0 = BRB. Then:

1. If r(x) = ∑`−1
j=0 rj(x− µ)j is a root polynomial of order ` at µ for R(x) then

w(x) := (γR1 + δR0)r(x) is a root polynomial of order ` at µ for L(x).

2. If r(x) = ∑`−1
j=0 rj(x− µ)j is a root polynomial of order ` at µ for L(x), then

w(x) := Q(x)r(x)− (x− µ)`Q1r`−1 is a root polynomial of order ` at µ for
R(x).
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3. If the columns of K, r1(x), . . . , rs(x) is a minimaximal set of root polynomials
at µ for R(x) then wj(x) := (γR1+δR0)rj(x), j = 1, . . . , s, is a minimaximal
set of root polynomials at µ for L(x).

4. If r1(x), . . . , rs(x) is a minimaximal set of root polynomials at µ for L(x),
then the columns of K and wj(x) := BRQ(x)rj(x) − (x − µ)`BRQ1rj,`−1,
j = 1, . . . , s, is a minimaximal set of root polynomials at µ for R(x).

Proof. It is a corollary of Theorems 9.4, 9.6 and 9.8, see also [20, Theorem 3.9]
and [20, Remark 3.10].

The results in this section allow to strengthen the recovery theorem for pencils
in L1.

Theorem 9.10. Let P (x) ∈ F[x]n×n have degree k ≥ 2. Also, let us block partition
any vector of size nk × 1 with k blocks of size n× 1.

Let L(x) ∈ L1(P ) be a left dual of the pencil D(x) defined in [20, Section 8],
and let r1(x), . . . , rs(x) be a minimaximal set of root polynomials at µ for L(x),
having orders `1 ≥ · · · ≥ `s. For all j = 1, . . . , s denote by r̃j(x) the kth block of
rj(x). Then, r̃1(x), . . . , r̃s(x) is a minimaximal set of root polynomials at µ for
P (x), having orders `1 ≥ · · · ≥ `s.

Proof. The pencil D(x) = D1x + D0 is a column-minimal right dual of L(x).
Hence, by Theorem 9.6, a minimaximal set for D(x) is {wi(x)}si=1 where, for
each 1 ≤ j ≤ s, wj(x) = Q(x)rj(x) − Q1(x − µ)`jrj,`j−1, Q(x) = Q1x + Q0 and
Q0D1 −Q1D0 = I. In turn, the first companion form C1(x) is a left dual of D(x).
Applying Theorem 9.6 with γ = 1, δ = 0, we find that a minimaximal set for
C1(x) is {D1wi(x)}si=1.

Note that by the proof of Theorem 9.4 we have, for all j = 1, . . . , s, D1wj(x) =
rj(x), and hence, {ri(x)}si=1 is a minimaximal set for C1(x). The statement now
follows as a corollary of Theorem 8.5.

10 Conclusions
We have studied the concept of root polynomials, showing that they are a useful
tool in the theory of matrix polynomials. Indeed, several known results have
been re-derived in a simplified manner. Moreover, we have also obtained a
number of new theorems related to root polynomials and their interaction with
other theoretical tools. As a particularly meaningful application, we have shown
how eigenvectors and eigenspaces can be consistently defined for singular matrix
polynomials, as subspaces of certain quotient spaces.
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