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Abstract We present a structured perturbation theory for the LDU factorization of
(row) diagonally dominant matrices and we use this theory to prove that a recent
algorithm of Q. Ye [Math. Comp. 77, 2195-2230 (2008)] computes the L, D and U
factors of these matrices with relative errors less than 14n3u, where u is the unit
roundoff and n×n is the size of the matrix. The relative errors for D are component-
wise and for L and U are normwise with respect the “max norm” ∥A∥M = maxi j |ai j|.
These error bounds guarantee that for any diagonally dominant matrix A we can com-
pute accurately its singular value decomposition and the solution of the linear system
Ax= b for most vectors b, independently of the magnitude of the traditional condition
number of A and in O(n3) flops.
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1 Introduction

Diagonally dominant matrices are very important in applications. For instance, they
arise out of finite difference and finite element discretizations of partial differential
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equations and in the solution of Markov modeling problems [1,5,8,26]. Diagonally
dominant matrices enjoy excellent theoretical and numerical properties that are ex-
plained in classical references [7,29–32]. However, if the condition number of an
n×n diagonally dominant matrix A is very large, then conventional algorithms com-
pute its singular value decomposition (SVD) and solve linear systems Ax = b with
very large relative errors. The main goal of this paper is to prove rigorously that it
is possible to compute with high accuracy SVDs and solutions of linear systems (for
most vectors b) for any diagonally dominant matrix independently of its condition
number and at O(n3) cost, i.e., roughly the same cost as that of conventional algo-
rithms for dense matrices. These results are direct consequences of the rigorous error
analysis that we will develop for an algorithm recently presented by Q. Ye [42] for
computing the LDU factorization of diagonally dominant matrices in 2n3 +O(n2)
operations.

This work is part of the intensive research effort that has been made in the last
twenty years to derive algorithms for computing the SVD of important classes of
structured n×n matrices to high relative accuracy at O(n3) cost. Some selected ref-
erences in this area are [10–16,22–24,27,42]. By high relative accuracy of singular
values we mean that the exact singular values σi and their computed counterparts σ̂i
satisfy

|σ̂i −σi| ≤ u p(n)σi for i = 1, . . . ,n,

where u is the unit roundoff of the computer and p(n) is a polynomial of low degree in
n. These error bounds guarantee that all singular values, including the tiniest ones, are
computed with correct leading digits. We refer the reader to [12] for the appropriate
meaning of “high relative accuracy” in singular vectors.

Introduced by Demmel et al. [12], and motivated by multiplicative perturba-
tion results developed in [25,33], the key unifying idea in high accuracy computa-
tions of SVDs is to first compute an accurate rank revealing decomposition (RRD),
i.e., a decomposition A = XDY T , where X and Y are well conditioned and D =
diag(d1, . . . ,dn) is diagonal, and then recover the singular values and vectors of A
from the factors of the RRD through algorithms of Jacobi type. More precisely, it is
shown in [12] that if a certain algorithm computes in floating point arithmetic factors
X̂ , D̂ and Ŷ with errors

|d̂i −di| ≤ uq(n) |di|, for i = 1, . . . ,n, (1)

∥X̂ −X∥2 ≤ uq(n)∥X∥2, ∥Ŷ −Y∥2 ≤ uq(n)∥Y∥2, (2)

where q(n) is a polynomial of low degree in n and ∥ · ∥2 is the matrix spectral norm1

[30, Ch. 6], then the Jacobi type algorithms proposed in [12] compute the singular
values of A at O(n3) cost and with errors

|σ̂i −σi| ≤ u p(n) max{κ(X),κ(Y )}|σi| for i = 1, . . . ,n, (3)

with κ(X) := ∥X∥2∥X−1∥2 the spectral condition number of X . The fundamental
point in (3) is that the error bound is governed by the condition numbers of the well

1 Obviously any other matrix norm like the 1-norm, ∞-norm, Frobenius norm or “max norm” can be
used at the cost of modifying the degree of q(n). We use the spectral norm in this Introduction simply to
follow reference [12].
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conditioned factors X and Y , and not by κ(A) which may be extremely large. Sym-
metric RRDs have been also used to compute accurate eigenvalues and eigenvectors
of symmetric matrices [21,18,19].

Very recently [20], it has been shown that computing an accurate RRD, in the
sense of (1)-(2), of an n× n matrix A also leads to very important benefits in the
accuracy of the numerical solution of the system Ax = b. More precisely, if the solu-
tion is computed in O(n3) flops as Xz = b, Dy = z, and Y T x = y, then the computed
solution x̂ satisfies

∥x̂− x∥2

∥x∥2
≤ u p(n) max{κ(X),κ(Y )} ∥A−1∥2 ∥b∥2

∥x∥2
. (4)

This is a very satisfactory bound because if un is the left singular vector of A as-
sociated with its smallest singular value, then ∥A−1∥2 ∥b∥2

∥x∥2
≤ ∥b∥2

|uT
n b| . This ratio is much

smaller than 1/u for all vectors b that are not close to be orthogonal to un, i.e., for
most vectors b [9].

The previous discussion illustrates that the computation of RRDs with errors
given by (1)-(2) is a task from which important benefits can be obtained for the accu-
racy of basic problems in Numerical Linear Algebra. In principle, this task may be un-
dertaken by using Gaussian Elimination with Complete Pivoting (GECP) because it
computes, in general, LDU factorizations with very well conditioned factors L (= X)
and U (= Y T ). However, it is well known that standard GECP produces very large
forward errors for ill conditioned matrices, and so it does not achieve (1)-(2). Error
bounds as those in (1)-(2) can be obtained only for certain classes of relevant struc-
tured matrices through highly structured and nontrivial implementations of GECP or
variations of it [6,10–12,14,15,18,37]. These classes of matrices include: Cauchy,
Vandermonde, acyclic, diagonally dominant M-matrices, γ-scaled diagonally domi-
nant, polynomial Vandermonde, and many others.

In this context a novel algorithm has been recently developed by Q. Ye [42, Algo-
rithm 1] for computing in 2n3 flops the LDU factorization with complete pivoting of a
(row2) diagonally dominant matrix A for which its off-diagonal entries and diagonally
dominant parts are accurately known (see Section 2.1 for definitions). Numerical ex-
periments presented in [42] show that in practice this algorithm behaves perfectly
well and achieves errors of type (1)-(2). However, if L̂, D̂ = diag(d̂1, . . . , d̂n),Û are
the computed factors and L,D = diag(d1, . . . ,dn),U are the exact ones, the best error
bounds that have been proved so far are [42, Theorem 3]

|d̂i −di| ≤ (u 5 ·8n−1 +O(u2)) |di|, for i = 1, . . . ,n,

∥L̂−L∥∞ ≤ (u n 6 ·8n−1 +O(u2))∥L∥∞, ∥Û −U∥∞ ≤ (u 6 ·8n−1 +O(u2))∥U∥∞.

Observe that these bounds do not guarantee any single correct digit even for very
small matrices, since in double precision IEEE arithmetic u= 2−53 and, then, u 8n−1 ≥
24 if n ≥ 20. Despite of being pessimistic, these bounds have a remarkable feature:

2 Note that results for the LDU factorization of column diagonally dominant matrices follow easily from
the row case: if A = LDU is column diagonally dominant, then AT =UT DLT is row diagonally dominant.
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they show that the forward errors are independent of any condition number of the
matrix A. This motivates a search of sharper error bounds for Algorithm 1 in [42].

The first main result in this work is to prove rigorously that Algorithm 1 in [42]
with complete pivoting achieves high accuracy, because it computes LDU factors with
relative errors bounded by 14n3u. This is presented in Theorem 4, which relies on a
new perturbation theory for the LDU factorization of diagonally dominant matrices.
This is presented in Theorem 3 and is the second main result in this work.

Algorithm 1 in [42] uses as inputs the diagonally dominant parts of A, that are
defined as vi := |aii|−∑ j ̸=i |ai j| for i = 1, . . . ,n. We discuss in this paragraph that this
is not an obstacle that spoils the accuracy of this algorithm. First, diagonally dominant
parts are often known in applications, because they may have physical significance or
they may be directly provided by the discretization scheme of a differential equation
[4]. In addition, even when only the entries of A are known, vi can be accurately
computed either by standard recursive summation or, if |aii| ≈ ∑ j ̸=i |ai j|, by doubly
compensated summation at 10n cost [38] (see also [30, Section 4.3]). Of course, these
accuracy issues refer to a matrix A stored in the computer. Errors coming from the
storage process are intrinsic in numerical computations and can only be avoided with
the use of extended precision.

The rest of the paper is organized as follows. Section 2 establishes basic concepts.
In Section 3, we develop a structured perturbation theory for the LDU factorization
of diagonally dominant matrices. This theory is summarized in Theorem 3, which is
used in Section 4 to perform a detailed error analysis of Algorithm 1 in [42]. The
main results of this analysis are included in Theorem 4. Conclusions and discussion
of future work are presented in Section 5.

2 Notation and preliminaries

Notation: We consider only real matrices and denote the set of m× n real matrices
by Rm×n. The entries of a matrix A are ai j and |A| is the matrix with entries |ai j|.
Inequalities A ≥ B for matrices mean ai j ≥ bi j for all i, j. We use MATLAB [34]
notation for submatrices, e.g., A(i : j,k : l) indicates the submatrix of A consisting
of rows i through j and columns k through l, and A(:,k : l) indicates the submatrix
of A consisting of columns k through l. A(i ′, j ′) denotes the submatrix of A with
row i and column j deleted. Upper (resp. lower) triangular matrices whose diagonal
entries are equal to one are called unit upper (resp. lower) triangular matrices. Is is
the s× s identity matrix and 0s the s× s zero matrix. The sign of x ∈ R is sign(x),
with the convention that sign(0) = 1. We present componentwise perturbation theory
and error analysis, but we use occasionally three matrix norms in the rest of the
paper to translate componentwise into normwise bounds: the “max norm” ∥A∥M :=
maxi j |ai j|, ∥A∥1 and ∥A∥∞ as they are defined in [30, Ch. 6].

In this section we summarize some basic properties of row diagonally dominant
matrices that may be singular. The potential singularity of the matrix complicates the
results, but this complication is necessary to develop perturbation theory and error
analysis valid for singular matrices in Sections 3 and 4. Similar results to the ones
in this section hold for column diagonally dominant matrices with the obvious mod-
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ifications. In addition, we introduce the model of floating point arithmetic used in
Section 4 and some notation for error analysis.

Let us recall that A ∈ Rn×n is row diagonally dominant if

|aii| ≥ ∑
j ̸=i

|ai j|, i = 1, . . . ,n.

The results in Theorem 1 are often used in this paper. The reader may refresh the
relation between Schur complements and Gaussian elimination in [29, p. 103].

Theorem 1 If A ∈ Rn×n is row diagonally dominant, then

(a) Every principal submatrix of A is row diagonally dominant;
(b) PAPT is row diagonally dominant for every permutation matrix P ∈ Rn×n;
(c) If a11 ̸= 0 then the Schur complement of a11 in A is row diagonally dominant;
(d) If detA ̸= 0 then detA has the same sign as the product a11a22 . . .ann; and
(e) |detA(i ′, i ′)| ≥ |detA(i ′, j ′)|, for all i = 1, . . . ,n and all j ̸= i.

Proof Parts (a) and (b) are immediate. For nonsingular matrices, the proofs of parts
(c), (d) and (e) can be found in: part (c) in [30, Theorem 13.7], part (d) in [32, p. 125]
and part (e) is proven inside the proof of [32, Theorem 2.5.12]. The proofs in [32]
are done for strictly row diagonally dominant matrices. The reader is invited to check
that these proofs remain essentially the same for row diagonally dominant matrices
that may be singular. ⊓⊔

The entry with largest absolute value of a row diagonally dominant matrix is in the
main diagonal. This property and parts (b) and (c) of Theorem 1 allow us to perform
Gaussian elimination with complete pivoting on these matrices as follows: in each
stage make the same row and column exchanges to place in the pivot position the
diagonal entry with largest absolute value of the corresponding Schur complement.
This strategy will be called complete-diagonal pivoting and is of paramount impor-
tance in this paper. However, many of the perturbation and rounding error bounds
we have obtained remain valid for any diagonal pivoting strategy, i.e., a strategy that
chooses as pivot any nonzero entry in the diagonal of each Schur complement.

The main object in this paper is the LDU factorization of a matrix A, A = LDU ,
where D is diagonal and L (resp. U) is a lower (resp. upper) unit triangular matrix. It
is well known that nonsingular row diagonally dominant matrices always have LDU
factorization without pivoting [29,30]. This is no longer true in the singular case. In
general, we only have Theorem 2.

Theorem 2 Let A ∈ Rn×n be a row diagonally dominant matrix with rank r. Then
there exist a permutation matrix P ∈ Rn×n, a unit lower triangular matrix L11 ∈
Rr×r, a unit upper triangular matrix U11 ∈ Rr×r, and a nonsingular diagonal matrix
D11 = diag(d1, . . . ,dr) ∈ Rr×r such that

PAPT = LDU (5)

where

L =

[
L11 0
L21 In−r

]
, D =

[
D11 0

0 0n−r

]
, U =

[
U11 U12

0 In−r

]
.

If rank(A) = n then P may be taken equal to In.
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Proof The result follows easily from performing Gaussian elimination with any di-
agonal pivoting strategy on A to compute the LDU factorization of A. ⊓⊔

For simplicity, we will often assume that the matrix A is arranged in such a way
that it satisfies (5) with P = I. This motivates Definition 1.

Definition 1 A row diagonally dominant matrix A ∈Rn×n with rank r is said to have
LDU factorization if A can be factorized as in (5) with P = I. In this case, equation
(5) is A = LDU and this is called the LDU factorization of A.

The LDU factorization of A in Definition 1 is unique and the nontrivial entries of L,
D and U are given by [28, p. 35]

ℓi j =
detA([1 : j−1, i ],1 : j)

detA(1 : j,1 : j)
, i > j and j = 1, . . . ,r, (6)

di =
detA(1 : i,1 : i)

detA(1 : i−1,1 : i−1)
, i = 1, . . . ,r, (detA(1 : 0,1 : 0) := 1) (7)

ui j =
detA(1 : i, [1 : i−1, j ])

detA(1 : i,1 : i)
, i < j and i = 1, . . . ,r. (8)

These determinantal formulas are essential in the perturbation theory of Section 3.
Recall also that the factor U of a row diagonally dominant matrix is also row diago-
nally dominant, so |ui j| ≤ 1 for i < j.

Determinantal formulas for the entries of the Schur complements of A are also of
interest to us. Let us recall them. Assume that A ∈ Rn×n with rank r has LDU factor-
ization as in Definition 1. Then Gaussian elimination without pivoting applied to A
finishes after min{r,n−1} stages3. Define A(1) := A and let A(k+1) = [a(k+1)

i j ] ∈Rn×n

be the matrix obtained after k stages of Gaussian elimination have been performed.
The matrix A(k+1)(k+1 : n,k+1 : n) is the Schur complement of A(1 : k,1 : k) in A
[29, p. 103]. We have that A(r+1)(r+1 : n , r+1 : n) = 0 and also (see [28, p. 26])

a(k+1)
i j =

detA([1 : k, i ], [1 : k, j ])
detA(1 : k,1 : k)

, i, j = k+1, . . . ,n, k = 1, . . . ,min{r,n−1}.

(9)
Since complete-diagonal pivoting will play an essential role in this paper, it is

convenient to define those matrices that are not permuted by Gaussian elimination
with complete-diagonal pivoting. This is done in Definition 2.

Definition 2 A row diagonally dominant matrix A ∈ Rn×n with rank r and having
LDU factorization is said to be arranged for complete-diagonal pivoting if

|a(k)kk |= max
k≤i≤n

|a(k)ii |, k = 1, . . . ,min{r,n−1}.

We will also say that the matrix A is almost arranged for complete-diagonal pivoting
if |a(k)kk | is not much smaller than maxk≤i≤n |a

(k)
ii | for all k, i.e.,

|a(k)kk | ≥
maxk≤i≤n |a

(k)
ii |

c
, k = 1, . . . ,min{r,n−1},

3 As usual [30], in this paper the kth stage is the one that makes zero the entries in the kth column below
the main diagonal. Therefore Gaussian elimination finishes after at most n−1 stages.
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for some modest constant c ≥ 1 independent of k.

2.1 Parametrization in terms of diagonally dominant parts and determinants

In the rest of the paper we consider matrices A ∈ Rn×n such that

aii ≥ 0, i = 1, . . .n, (10)

as it was done in [42]. This does not impose any theoretical or numerical restriction
for solving linear systems whose matrix is A or for computing the singular value de-
composition of A, since we can multiply A by a diagonal matrix D= diag(±1, . . . ,±1)
to turn the diagonal entries of A into nonnegative numbers. This process does not pro-
duce any rounding errors and does not change the singular values of A. In addition,
the modifications in the LDU decomposition of A or in its singular vectors are trivial.

We follow [42] and parameterize every row diagonally dominant matrix A∈Rn×n

in terms of its diagonally dominant parts and off-diagonal entries. The diagonally
dominant parts of A are defined as

vi := aii −∑
j ̸=i

|ai j|, i = 1, . . .n, (11)

and they will be frequently stored in a vector v := [v1, . . . ,vn]
T . Note that a matrix

satisfying (10) is row diagonally dominant if and only if vi ≥ 0 for i = 1, . . . ,n. The
off-diagonal entries of A are stored in the matrix AD whose entries are

(AD)i j :=
{

0 for i = j
ai j for i ̸= j .

The pair (AD,v) allows us to recover the matrix A and, therefore, it provides a parame-
trization of A. A matrix A parameterized is this way will be denoted as

A = D(AD,v). (12)

Q. Ye has introduced very recently the use of the parametrization A = D(AD,v)
of row diagonally dominant matrices in [42,43]. This author used previously this
parametrization in the particular case of diagonally dominant matrices that are also
M-matrices [3,4] and it has been also applied by other authors for these matrices [14,
37]. It should be noted that the concept of diagonally dominant part is not new: it can
be traced back to early references, where it is applied to bound the condition number
of diagonally dominant matrices [2,40,41].

The parametrization (12) allows us to express in Lemma 1 the determinant of
row diagonally dominant matrices as a summation of nonnegative terms and this is
the main reason why a satisfactory perturbation theory can be developed in Section3.
Here and in the rest of the paper v ≥ 0 denotes vi ≥ 0 for i = 1, . . . ,n.
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Lemma 1 Let A = D(AD,v) ∈ Rn×n be such that v ≥ 0, i.e., A is row diagonally
dominant with nonnegative diagonal entries. Denote the algebraic cofactors of A by

Ci j := (−1)i+ j detA(i′, j′), i, j = 1, . . . ,n.

Then
detA = vi Cii +∑

j ̸=i
(|ai j|Cii +ai j Ci j) , i = 1, . . . ,n,

with vi Cii ≥ 0 and (|ai j|Cii +ai j Ci j)≥ 0 for j ̸= i.

Proof Use aii = vi +∑ j ̸=i |ai j| in the cofactor expansion detA = aiiCii +∑ j ̸=i ai jCi j.
For the signs: recall that A(i′, i′) is also row diagonally dominant with nonnegative
diagonal entries, so detA(i′, i′) ≥ 0 by Theorem 1, part (d). Finally, apply part (e) of
Theorem 1 to prove (|ai j|Cii +ai j Ci j)≥ 0. ⊓⊔

2.2 Model of floating point arithmetic and notation for error analysis

In the rounding error analysis of Section 4 we use the conventional error model for
floating point arithmetic [30, section 2.2]: f l(a⊙ b) = (a⊙ b)(1+ψ), where a and
b are real floating point numbers, ⊙ ∈ {+,−,×,/}, and |ψ | ≤ u, with u the unit
roundoff. We assume that neither overflow nor underflow occurs. We will also use
the following result [30, Lemma 3.1]: if q is a positive integer, |ψi| ≤ u and ρi =±1
for i = 1, . . . ,q, and qu < 1, then

q

∏
i=1

(1+ψi)
ρi = 1+θq, where |θq| ≤

qu
1−qu

=: γq. (13)

In proofs and auxiliary lemmas, we will use for simplicity Stewart’s notation for
keeping track of products of (1+ψi)

ρi factors [39] (see also [30, p. 68]):

<q>:=
q

∏
i=1

(1+ψi)
ρi , (14)

which satisfies the rules < j><k>=< j+k> and < j> /<k>=< j+k>. In general,
we use the same symbol <k> for different products of k factors (1+ψi)

ρi , so <k>
/<k>=<2k>. Of course, <0>= 1. Observe that for all q, <q>> 0, because u < 1.
In addition, if s > q, then <q> can be replaced in any expression by <s>, because
<q>=<q> ∏s−q

i=1 (1+ψ ′
i ), with 0 = |ψ ′

i |< u.

3 Structured perturbation theory for the LDU factorization

This section is organized in two parts. In Subsection 3.1, we state without proofs the
main results we have obtained on perturbation bounds for the LDU factorization of
a row diagonally dominant matrix with nonnegative diagonal entries. The proofs are
presented in Subsections 3.2 and 3.3, together with some auxiliary lemmas that we
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consider interesting on their own. We hope that this organization will allow the reader
to find quickly the most relevant information.

The main perturbation result is that small entrywise relative perturbations of the
diagonally dominant parts, v, and the off-diagonal entries, AD, of a row diagonally
dominant matrix A with nonnegative diagonal entries produce small relative varia-
tions of the entries of D and small absolute variations of the entries of U . However,
the absolute variations of the entries of L are not small in general and we can only
prove that they are small if the matrix A is almost arranged for complete-diagonal
pivoting. We stress that complete-diagonal pivoting is essential, since, for other piv-
oting strategies, we present an example where the variations in the factor L are very
large. Note that small absolute variations of the entries of L and U imply small rela-
tive normwise variations of L and U as a consequence of the lower bounds 1 ≤ ∥L∥∞
and 1 ≤ ∥U∥∞. The satisfactory perturbation bounds that we present do not depend
on any condition number.

3.1 Main perturbation results and comments

We gather the perturbation bounds we have proved for the LDU factorization in The-
orem 3. This theorem only pays attention to the variation of those entries of the LDU
factors that are not trivial according to Definition 1 and the rank of the matrix.

Theorem 3 Let A = D(AD,v) ∈ Rn×n be such that v ≥ 0, i.e., A is row diagonally
dominant with nonnegative diagonal entries. Suppose rank(A) = r and that A has
LDU factorization A = LDU as in Definition 1. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such
that

|ṽ− v| ≤ δ v and |ÃD −AD| ≤ δ |AD|, for some 0 ≤ δ < 1. (15)

Then

(a) Ã is also row diagonally dominant with nonnegative diagonal entries, rank(Ã) =
r, and it has LDU factorization Ã = L̃ D̃Ũ;

(b) For i = 1, . . . ,r,

d̃i = di
(1+ηi1) · · ·(1+ηii)

(1+ηi−1,1) · · ·(1+ηi−1,i−1)
, where |ηik| ≤ δ , |ηi−1,p| ≤ δ ,

for k = 1, . . . , i and p = 1, . . . , i−1;
(c)

|ũi j −ui j| ≤ 3 iδ , i = 1, . . . ,min{r,n−1} and i < j;

(d) For j = 1, . . . ,min{r,n−1} and i > j

|ℓ̃i j − ℓi j| ≤ |ℓi j|
(

1
(1−δ ) j −1

)
+ 2

(1+δ ) j −1
(1−δ ) j

∣∣∣∣∣∣a
( j)
ii

a( j)
j j

∣∣∣∣∣∣ ,
where A( j) is the matrix obtained after ( j−1) stages of Gaussian elimination;
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(e) In addition, let r′ = min{r,n−1} and β1,β2, . . . ,βr′ be numbers such that 0 ≤ β j,
(1+β j) |a( j)

j j | ≥ |a( j)
ii |, for j = 1, . . . ,r′ and j < i ≤ n, and j δ < 1, then

|ℓ̃i j − ℓi j| ≤ (1+β j)
j δ

1− j δ

(
3+

2 j δ
1− j δ

)
. (16)

Note that if A is arranged for complete-diagonal pivoting then (16) holds with
β j = 0 for j = 1, . . . ,r′.

Theorem 3 is our main perturbation result and it deserves some comments. Note
first that if the matrix A does not have LDU factorization but, according to Theorem 2,
there exists a permutation matrix P such that PAPT has LDU factorization, then part
(a) of Theorem 3 guarantees that, for the same P, PÃPT has also LDU factorization.
Second, recall that 1 ≤ ∥U∥∞, hence the absolute entrywise bounds in part (c) of
Theorem 3 provide the following very satisfactory relative normwise bound for the
factor U :

∥Ũ −U∥∞

∥U∥∞
≤ 3

4
n2 δ .

However, the bounds for the entries of the L factors in part (d) of Theorem 3 are large
if δ |a( j)

ii |& |a( j)
j j | for some i > j. Fortunately, as a direct consequence of part (d), part

(e) of Theorem 3 establishes good absolute entrywise bounds when the matrix A is
almost arranged for complete-diagonal pivoting, i.e., if the pivot used in each stage
j of Gaussian elimination is, in absolute value, larger than the maximum possible
pivot divided by a moderate number larger than one. We consider matrices that are
almost arranged for complete-diagonal pivoting because they naturally appear in the
error analysis of Section 4, since the permutation matrix determined by Algorithm
1 in [42] with complete-diagonal pivoting in floating point arithmetic may be dif-
ferent from the permutation matrix corresponding to complete-diagonal pivoting in
exact aritmetic. We will see that the perturbation behaviors of the L and U factors
are different as a consequence of the different properties of L and U factors of row
diagonally dominant matrices: U is also row diagonally dominant while L does not
inherit, in general, any particular property.

Diagonal pivoting strategies in Gaussian elimination that compute column diag-
onally dominant L factors of n×n row diagonally dominant matrices were presented
in [42, Algorithm 1] (see also [42, pp. 2198-2199]). Strategies of this type were pre-
viously introduced in [37] for row diagonally dominant M-matrices and have the
advantage over complete-diagonal pivoting that the L and U factors satisfy

κ1(L)≤ 2n and κ∞(U)≤ 2n.

Therefore, these strategies would guarantee rigorously small error bounds in (3) for
the singular values, if they can be implemented to compute LDU factorizations with
errors (1)-(2). The drawback of these strategies is that part (d) of Theorem 3 does not
provide good perturbation bounds for the L factor, and this is not an artifact of our
proof as Example 1 below shows.
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Example 1 This example illustrates that complete-diagonal pivoting is essential to
guarantee a good behavior of the factor L under structured small perturbations of
type (15). Consider the LDU factorization of the following row diagonally dominant
matrix A

A =

1000 100 500
0 0.1 0.05

100 10 120

=

 1
0 1

0.1 0 1

1000
0.1

70

1 0.1 0.5
1 0.5

1

 , (17)

and note that the vector of the diagonally dominant parts of A is v(A)= [400,0.05,10].
The factor L is column diagonally dominant. Moreover, the reader is invited to check
that A is arranged in such a way that the pivots used without permutations satisfy

n

∑
i=k+1

|a(k)ik |

|a(k)kk |
= min

k≤ j≤n

n

∑
i=k
i ̸= j

|a(k)i j |

|a(k)j j |
, k = 1, . . . ,n−1, (18)

and, therefore, the kth stage of Gaussian elimination minimizes over all possible
choices of diagonal pivots the sum of the absolute values of the off diagonal en-
tries of L(:,k) for k = 1, . . . ,n−1. In our example, it is easy to check that there is no
permutation PAPT of A that produces a column diagonally dominant L factor with
a smaller sum of the absolute values of all its off-diagonal entries. Pivoting strate-
gies that satisfy (18) are called in [36] column maximal relative diagonal dominance
pivoting. Despite of these properties the factor L is very sensitive to tiny structured
perturbations of type (15). To this purpose, consider now the LDU factorization of
the row diagonally dominant matrix Ã = L̃D̃Ũ .

Ã =

1000 101 500
0 0.1 0.05

100 10 120

=

 1
0 1

0.1 −1 1

1000
0.1

70.05

1 0.101 0.5
1 0.5

1

 ,
whose diagonally dominant parts are v(Ã) = [399,0.05,10]. Note that A and Ã satisfy
(15) with δ = 10−2 but that their L factors are very different, since |ℓ̃32 − ℓ32| =
1. Theorem 3 (d) explains this large variation because |a(2)33 |/|a

(2)
22 | = 700 > δ−1.

The reader is invited to check that if P is the permutation matrix such that PAPT

is arranged for complete-diagonal pivoting, then the LDU factorizations of PAPT and
PÃPT are very close each other, as it is predicted by part (e) of Theorem 3. Observe
also that L and L̃ are both very well conditioned.

In the error analysis of Section 4, we will use how the diagonal entries of Schur
complements vary under structured perturbations of type (15). We establish these
variations in Lemma 2.

Lemma 2 Let A = D(AD,v) ∈ Rn×n be such that v ≥ 0. Suppose rank(A) = r and
that A has an LDU factorization as in Definition 1. Let Ã =D(ÃD, ṽ) ∈Rn×n be such
that

|ṽ− v| ≤ δ v and |ÃD −AD| ≤ δ |AD|, for some 0 ≤ δ < 1.
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Then, for k = 1, . . . ,min{r+1,n} and i = k, . . . ,n,

ã(k)ii = a(k)ii
(1+η(ki)

1 ) · · ·(1+η(ki)
k )

(1+ηk−1,1) · · ·(1+ηk−1,k−1)
, where |η(ki)

j | ≤ δ , |ηk−1,p| ≤ δ ,

for j = 1, . . . ,k and p = 1, . . . ,k−1.

3.2 Perturbation of principal minors and proofs of parts (a) and (b) of Theorem 3
and Lemma 2

We will often use that equations (15) for the perturbed matrix Ã=D(ÃD, ṽ) are equiv-
alent to

ṽi = vi (1+ϕi), where |ϕi| ≤ δ < 1 for i = 1, . . . ,n, (19)
ãi j = ai j (1+φi j), where |φi j| ≤ δ < 1 for i ̸= j, i, j = 1, . . . ,n. (20)

Observe that 1+ϕi ≥ 1−δ > 0, for all i, and that 1+φi j > 0, for all i ̸= j. So ṽi ≥ 0
if and only if vi ≥ 0 or, equivalently, Ã is row diagonally dominant with nonnega-
tive diagonal entries if and only if A is row diagonally dominant with nonnegative
diagonal entries. As a consequence, perturbations of type (15) (equivalently, of type
(19)-(20)) can be properly termed as structured-preserving perturbations in the set of
row diagonally dominant matrices with nonnegative diagonal entries. This preserva-
tion property is essential in subsequent developments. We will also use that

|ãi j|= |ai j|(1+φi j). (21)

All the perturbation results that we present are based on Lemma 3, that studies
the variation of the determinant under structured perturbations of type (15).

Lemma 3 Let A = D(AD,v) ∈ Rn×n be such that v ≥ 0.

(a) If B[i] =D(B[i]
D ,v

[i]) ∈Rn×n is a matrix that differs from A only in the ith row, i.e.,
B[i](p, :) = A(p, :) for p ̸= i, and whose ith row parameters satisfy

|v[i]i − vi| ≤ δ vi and |b[i]i j −ai j| ≤ δ |ai j|, for j ̸= i and 0 ≤ δ < 1, (22)

then
detB[i] = (detA)(1+ηi), where |ηi| ≤ δ .

(b) If Ã = D(ÃD, ṽ) ∈ Rn×n is a matrix that satisfies (15), then

det Ã = (detA)(1+η1) · · ·(1+ηn), where |ηk| ≤ δ for k = 1, . . . ,n.

Proof Note that v[i] ≥ 0 and ṽ ≥ 0. The algebraic cofactors for the ith row of A and
B[i] are equal. So, use Lemma 1 to get

detB[i] = v[i]i Cii +∑
j ̸=i

(
|b[i]i j |Cii +b[i]i j Ci j

)
, (23)
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where Ci j, j = 1, . . . ,n, are cofactors of A. Observe, as in (19) and (20), that v[i]i =

vi (1+ϕi) and b[i]i j = ai j (1+φi j), where |ϕi| ≤ δ and |φi j| ≤ δ . Recall also that (1+
ϕi)> 0 and (1+φi j)> 0. Then, (23) and Lemma 1 imply

detB[i] = vi (1+ϕi)Cii +∑
j ̸=i

(|ai j|(1+φi j)Cii +ai j (1+φi j)Ci j)

= detA+ vi ϕi Cii +∑
j ̸=i

φi j (|ai j|Cii +ai j Ci j) ,

and

|detB[i]−detA| ≤ δ

(
vi Cii +∑

j ̸=i
(|ai j|Cii +ai j Ci j)

)
= δ detA.

This is equivalent to the result in part (a).
Part (b) is a direct consequence of part (a). Consider that the perturbed matrix

Ã is obtained from A through a sequence of n “only-one-row” perturbations of type
(22): first only the parameters of the 1st row are modified, then the parameters of
the 2nd row are modified, and so on until the parameters of the nth row are modified
and we obtain Ã. According to the result in part (a), in each of these “only-one-row”
perturbation steps the determinant of the matrix obtained after the perturbation is
equal to the determinant before the perturbation times a factor of type 1+η , with
|η | ≤ δ . ⊓⊔

Lemma 4 considers structured perturbations of principal minors of row diagonally
dominant matrices with nonnegative diagonal entries. It is a corollary of Lemma 3.

Lemma 4 Let A =D(AD,v) ∈Rn×n be such that v ≥ 0, let B[i] =D(B[i]
D ,v

[i]) ∈Rn×n

be a matrix that differs from A only in the ith row and that satisfies (22), and let
Ã = D(ÃD, ṽ) ∈ Rn×n be a matrix that satisfies (15). Let 1 ≤ i1 < i2 < · · · < iq ≤ n
and α = [i1, i2, . . . , iq], and denote the principal submatrix of A that lies in rows and
columns indexed by α as A(α,α). Then

(a)

det B[i](α,α) =

{
det A(α,α) if i /∈ α
(det A(α ,α))

(
1+η(α)

i

)
if i ∈ α ,

where |η(α)
i | ≤ δ ;

(b)
det Ã(α ,α) = (det A(α,α)) (1+η(α)

1 ) · · ·(1+η(α)
q ),

where |η(α)
k | ≤ δ for k = 1, . . . ,q.

Proof For B[i], we assume that i ∈ α , because otherwise the result is trivial. The
discussion after (19)-(20) implies that B[i] and Ã are row diagonally dominant with
nonnegative diagonal entries, since A has these properties. Then part (a) of Theorem
1 guarantees that A(α ,α), B[i](α,α) and Ã(α,α) are also row diagonally dominant
with nonnegative diagonal entries. They can be parameterized in terms of their diag-
onally dominant parts and off diagonal entries. Denote by w, w[i] and w̃, respectively,
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the vectors of the diagonally dominant parts of A(α ,α), B[i](α,α) and Ã(α ,α). Then,
the parameterizations of these matrices are A(α ,α) = D(AD(α,α),w), B[i](α,α) =

D(B[i]
D (α,α),w[i]), and Ã(α,α) = D(ÃD(α ,α), w̃), whose off-diagonal entries obvi-

ously satisfy

|ãk j −ak j| ≤ δ |ak j| and |b[i]is −ais| ≤ δ |ais|, for k ̸= j,s ̸= i, k, j,s∈α. (24)

For the diagonally dominant parts, observe that if the entries of w are indexed as
w = [wi1 ,wi2 , . . . ,wiq ]

T , then

wp = vp + ∑
j ̸=p
j/∈α

|ap j|, for p ∈ α.

Use (19)-(20) to show that, for p ∈ α ,

w̃p = ṽp + ∑
j ̸=p
j/∈α

|ãp j|= vp (1+ϕp)+ ∑
j ̸=p
j/∈α

|ap j|(1+φp j)

= wp + vp ϕp + ∑
j ̸=p
j/∈α

|ap j|φp j.

Therefore, |w̃−w| ≤ δ w, and the same argument shows that |w[i]
i −wi| ≤ δ wi. These

results together with (24) allow us to apply Lemma 3 to A(α,α) = D(AD(α,α),w),
B[i](α ,α) = D(B[i]

D (α,α),w[i]), and Ã(α,α) = D(ÃD(α,α), w̃) to prove Lemma 4.
⊓⊔

Lemma 5 is a slightly stronger version of part (a) of Theorem 3 that may be useful
in some situations.

Lemma 5 Let A = D(AD,v) ∈ Rn×n and Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ− v| ≤ δ |v| and |ÃD −AD| ≤ δ |AD|, for some 0 ≤ δ < 1.

(a) Then v ≥ 0 if and only if ṽ ≥ 0, i.e., A is row diagonally dominant with nonnega-
tive diagonal entries if and only if Ã is row diagonally dominant with nonnegative
diagonal entries.

(b) Assume that v≥ 0. Then: (i) rank(A) = rank(Ã); and (ii) A has LDU factorization
if and only if Ã has LDU factorization.

Proof We have already seen that the discussion after (19)-(20) implies that v ≥ 0 if
and only if ṽ≥ 0. Assume v≥ 0 in the rest of the proof. Let r̃ = rank(Ã). According to
Theorem 2, there exists a permutation matrix P̃ such that C̃ = P̃ÃP̃T has factorization
LDU as in (5). So, by (7), det C̃(1 : r̃,1 : r̃) ̸= 0. Define C = P̃AP̃T , then part (b) of
Lemma 4 implies

det C̃(1 : r̃,1 : r̃) = (det C(1 : r̃,1 : r̃)) (1+η1) · · ·(1+ηr̃),

where |η j| ≤ δ < 1 and, therefore, (1 + η j) > 0, for j = 1, . . . , r̃. In conclusion,
det C(1 : r̃,1 : r̃) ̸= 0 and rank(A)≥ rank(Ã). The same argument applied to the LDU
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factorization of a certain permutation PAPT of A leads to rank(A)≤ rank(Ã). There-
fore, rank(A) = rank(Ã).

Now, we suppose that A has LDU factorization and prove that Ã has also LDU
factorization. Let r = rank(A) and note that, for p = 1, . . . ,r, detA(1 : p,1 : p) ̸= 0
because A has LDU factorization and equations (7) hold. Then, det Ã(1 : p,1 : p) ̸= 0
again by Lemma 4. So, Ã(1 : r,1 : r) has a unique LDU factorization, that we write
as Ã(1 : r,1 : r) = L̃11D̃11Ũ11 (see [30, Theorem 9.1]). Denote Ã11 := Ã(1 : r,1 : r),
partition Ã accordingly, and write the identity

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
=

[
L̃11 0

Ã21(D̃11Ũ11)
−1 In−r

][
D̃11 0

0 S̃22

][
Ũ11 (L̃11D̃11)

−1Ã12
0 In−r

]
, (25)

with S̃22 = Ã22 − Ã21Ã−1
11 Ã12. The fact that rank(A) = rank(Ã) implies S̃22 = 0, and

so (25) provides the LDU factorization of Ã. A similar argument proves that if Ã has
LDU factorization then A has also LDU factorization. ⊓⊔

We can prove now parts (a) and (b) of Theorem 3 and Lemma 2.

Proof of part (a) of Theorem 3 It is a corollary of Lemma 5. ⊓⊔

Proof of part (b) of Theorem 3 Combine (7) and part (b) of Lemma 4. ⊓⊔

Proof of Lemma 2 Combine (9) and part (b) of Lemma 4. ⊓⊔

3.3 Perturbation of nonprincipal minors and proofs of parts (c), (d) and (e) of
Theorem 3

We need Lemma 6 below to prove parts (c), (d) and (e) of Theorem 3. Note that
Lemma 6 is not a perturbation result. It establishes certain technical relationships
between the minors appearing as numerators in the entries of Schur complements
(see (9)) and principal minors for row diagonally dominant matrices. The proof of
Lemma 6 is the most complicated one in this section. We will use for simplicity the
following notation:

g(k+1)
pq := det A([1 : k, p], [1 : k,q]), (26)

for k = 1, . . . ,n− 1 and p,q = k+ 1, . . . ,n. We denote as
(

g[i]
)(k+1)

pq
and g̃(k+1)

pq the

corresponding minors of the perturbed matrices B[i] and Ã that satisfy (22) and (15),
respectively.

Lemma 6 Let A = D(AD,v) ∈ Rn×n be such that v ≥ 0. For k = 1, . . . ,n−2, p ̸= q,
and p,q = k+ 1, . . . ,n, let Gi j be the algebraic cofactor of A([1 : k, p], [1 : k,q]) for
the entry ai j. Then the following statements hold for the minors defined in (26).

(a)

g(k+1)
pq = ap1Gp1 + · · ·+apkGpk +apqGpq, and (27)

2g(k+1)
pp ≥ |ap1Gp1|+ · · ·+ |apkGpk|+ |apqGpq|. (28)
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(b) For 1 ≤ i ≤ k,

g(k+1)
pq =

(
vi + ∑

j/∈[1:k,q]
|ai j|

)
Gii + ∑

j ̸=i
j∈[1:k,q]

(ai jGi j + |ai j|Gii) , and (29)

2g(k+1)
pp ≥

(
vi + ∑

j/∈[1:k,q]
|ai j|

)
|Gii| + ∑

j ̸=i
j∈[1:k,q]

∣∣ai jGi j + |ai j|Gii
∣∣ . (30)

Proof Note first that for every row diagonally dominant matrix C ∈ Rn×n with non-
negative diagonal entries, the principal submatrix C([1 : k, p,q], [1 : k, p,q]) is also
row diagonally dominant with nonnegative diagonal entries. Therefore, according to
parts (d) and (e) of Theorem 1,

det C([1 : k, p], [1 : k, p]) ≥ |det C([1 : k, p], [1 : k,q])|. (31)

Part (a). Equation (27) is obvious. Define a matrix A′ = D(A′
D,v

′) ∈ Rn×n through
its diagonally dominant parts and off-diagonal entries as follows: v′ = v, A′

D(l, :) =
AD(l, :) for l ̸= p, a′p j = ap j for j /∈ [1 : k,q] and j ̸= p, and

a′p j = ap j (1+δ ssp j), for j ∈ [1 : k,q],

where s = sign(g(k+1)
pq ), sp j = sign(ap j Gp j), and 0 ≤ δ < 1 is an arbitrary param-

eter. Observe that A′ is row diagonally dominant with nonnegative diagonal entries
because v′ ≥ 0 and it differs from A only in the pth row. Therefore, by (31) applied
to A′ and part (a) of Lemma 4, we have that

(1+δ )g(k+1)
pp ≥

(
g′
)(k+1)

pp ≥
∣∣∣(g′)(k+1)

pq

∣∣∣ . (32)

The cofactors Gp j in equation (27) are equal in A that in A′, so(
g′
)(k+1)

pq = a′p1Gp1 + · · ·+a′pkGpk +a′pqGpq

= g(k+1)
pq + δ s

(
|ap1Gp1|+ · · ·+ |apkGpk|+ |apqGpq|

)
.

Both terms in the last equation have the same sign. Combine this property with (32)
to get

(1+δ )g(k+1)
pp ≥ δ

(
|ap1Gp1|+ · · ·+ |apkGpk|+ |apqGpq|

)
, (33)

that is valid for any 0 ≤ δ < 1. Note that |ap1Gp1|+ · · ·+ |apkGpk|+ |apqGpq| and
g(k+1)

pp do not depend on δ . Therefore the inequality (33) also holds for δ = 1, by
continuity, which gives (28).
Part (b). This proof follows the pattern of the one of part (a), but it is more compli-
cated. The cofactor expansion of g(k+1)

pq along row i and the definition (11) give (29).
Let s = sign(g(k+1)

pq ) and 0 ≤ δ < 1 be an arbitrary parameter. Define an auxiliary
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matrix A′ =D(A′
D,v

′)∈Rn×n such that A′(l, :) = A(l, :), for l ̸= i, and the parameters
of its ith row are:

v′i = vi (1+δ ssii), where sii = sign(Gii),

a′i j = ai j (1+δ ssii), for j /∈ [1 : k,q],

a′i j = ai j (1+δ ssi j), for j ∈ [1 : k,q], j ̸= i, where si j = sign(ai jGi j + |ai j|Gii).

Observe that this matrix A′ also satisfies (32) as the one in the proof of part (a). In
addition, the cofactors Gii and Gi j in equation (29) are equal in A that in A′ and, for

j ∈ [1 : k,q], j ̸= i,
(

a′i jGi j + |a′i j|Gii

)
= (1+δ ssi j)(ai jGi j + |ai j|Gii) by (21). So

(
g′
)(k+1)

pq =

(
v′i + ∑

j/∈[1:k,q]
|a′i j|

)
Gii + ∑

j ̸=i
j∈[1:k,q]

(
a′i jGi j + |a′i j|Gii

)
,

= g(k+1)
pq + δ s


(

vi + ∑
j/∈[1:k,q]

|ai j|

)
|Gii| + ∑

j ̸=i
j∈[1:k,q]

∣∣ai jGi j + |ai j|Gii
∣∣
 .

Again, both terms in the last equation have the same sign. Combine this property with
(32) to get

(1+δ )g(k+1)
pp ≥ δ


(

vi + ∑
j/∈[1:k,q]

|ai j|

)
|Gii| + ∑

j ̸=i
j∈[1:k,q]

∣∣ai jGi j + |ai j|Gii
∣∣
 .

An argument similar to that in part (a) shows that this inequality holds for δ = 1,
which gives (30). ⊓⊔

Lemma 7 studies the variations of the nonprincipal minors appearing in the entries
(9) of the Schur complements under structured perturbations of type (15).

Lemma 7 Let A =D(AD,v) ∈Rn×n be such that v ≥ 0, let B[i] =D(B[i]
D ,v

[i]) ∈Rn×n

be a matrix that differs from A only in the ith row and that satisfies (22), and let
Ã =D(ÃD, ṽ)∈Rn×n be a matrix that satisfies (15). Then, for k = 1, . . . ,n−2, p ̸= q,
and p,q = k+1, . . . ,n, the following statements hold for the minors defined in (26).

(a) ∣∣∣∣(g[i]
)(k+1)

pq
−g(k+1)

pq

∣∣∣∣≤{ 0 if i /∈ [1 : k, p]
2δ g(k+1)

pp if i ∈ [1 : k, p]
.

(b)

|g̃(k+1)
pq −g(k+1)

pq | ≤ 2
(
(1+δ )k+1 −1

)
g(k+1)

pp .
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Proof Let us start with Part (a). Assume that i∈ [1 : k, p], because otherwise the result
is trivial. First we consider 1 ≤ i ≤ k and use (29) to get(

g[i]
)(k+1)

pq
=

(
v[i]i + ∑

j/∈[1:k,q]
|b[i]i j |

)
Gii + ∑

j ̸=i
j∈[1:k,q]

(
b[i]i j Gi j + |b[i]i j |Gii

)
,

since the cofactors Gii and Gi j are equal in A and in B[i]. Observe, as in (19) and (20),
that v[i]i = vi (1+ϕi) and b[i]i j = ai j (1+φi j), where |ϕi| ≤ δ and |φi j| ≤ δ . So, by (21),(

b[i]i j Gi j + |b[i]i j |Gii

)
= (1+φi j) (ai j Gi j + |ai j|Gii) , and

(
g[i]
)(k+1)

pq
= g(k+1)

pq +

(
ϕi vi + ∑

j/∈[1:k,q]
φi j |ai j|

)
Gii + ∑

j ̸=i
j∈[1:k,q]

φi j (ai j Gi j + |ai j|Gii) ,

and

∣∣∣∣(g[i]
)(k+1)

pq
−g(k+1)

pq

∣∣∣∣≤ δ


(

vi + ∑
j/∈[1:k,q]

|ai j|

)
|Gii|+ ∑

j ̸=i
j∈[1:k,q]

∣∣ai j Gi j + |ai j|Gii
∣∣


≤ δ 2g(k+1)
pp ,

by (30). This proves part (a) if 1 ≤ i ≤ k. For i = p, use (27) and (28) and follow a
similar argument.

Now, we prove Part (b). As in the proof of part (b) of Lemma 3, we consider
again that Ã is obtained from A as a sequence of n “only-one-row” perturbations of
type (22). Note that all matrices in this sequence are row diagonally dominant with
nonnegative diagonal entries. Obviously, the variation of g(k+1)

pq is consequence only
of the perturbations of rows with indices in [1 : k, p]. Let α be a subset of [1 : k, p]
and denote by (gα)(k+1)

pq the minor (26) corresponding to a matrix obtained from A
through perturbations of the rows with indices in α , while the remaining rows remain

unchanged. Observe that g̃(k+1)
pq =

(
g[1:k,p]

)(k+1)

pq
. So,

|g̃(k+1)
pq −g(k+1)

pq | ≤
∣∣∣∣g̃(k+1)

pq −
(

g[1:k]
)(k+1)

pq

∣∣∣∣+ ∣∣∣∣(g[1:k]
)(k+1)

pq
−
(

g[1:k−1]
)(k+1)

pq

∣∣∣∣+ · · ·

+

∣∣∣∣(g[1]
)(k+1)

pq
−g(k+1)

pq

∣∣∣∣
≤ 2δ

((
g[1:k]

)(k+1)

pp
+
(

g[1:k−1]
)(k+1)

pp
+ · · ·+

(
g[1]
)(k+1)

pp
+g(k+1)

pp

)
,

where the last inequality follows from applying part (a) to each matrix in the sequence
of “only-one-row” perturbations. Apply part (a) of Lemma 4 iteratively to obtain

|g̃(k+1)
pq −g(k+1)

pq | ≤ 2δ
(
(1+δ )k +(1+δ )k−1 + · · ·+(1+δ )+1

)
g(k+1)

pp ,

which proves the result. ⊓⊔
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We can prove now parts (c), (d) and (e) of Theorem 3.

Proof of part (c) of Theorem 3 By using u1 j = a1 j/a11, j > 1, the reader may easily
check that the off-diagonal entries of the first rows of U and Ũ satisfy ũ1 j = u1 j(1+
φ1 j)/(1+φ11), where |φ1s| ≤ δ , for s = 1, . . . ,n. This implies |ũ1 j − u1 j| ≤ 2δ , be-
cause A and Ã are both row diagonally dominant and so |ũ1 j| ≤ 1 and |u1 j| ≤ 1.

To study the variation of the entries ui j with j > i > 1, consider again that Ã
is obtained from A as a sequence of n “only-one-row” perturbations of type (22).
Observe, by (8), that the variation of ui j depends only on the perturbations of rows
1, . . . , i of A. Let B[s], with s ∈ [1 : i], be a matrix that differs from A only in the sth
row and that satisfies (22) for this row. Let u[s]i j be the entries of the U factor of the
LDU factorization of B[s]. This factorization exists by part (a) of Theorem 3 applied
to B[s]. Use (8), (26), part (a) of Lemma 4 and part (a) of Lemma 7 to show

u[s]i j =

(
g[s]
)(i)

i j(
g[s]
)(i)

ii

=
g(i)i j +2ξ1 g(i)ii

g(i)ii (1+ξ2)
=

ui j +2ξ1

(1+ξ2)
,

where |ξ1| ≤ δ and |ξ2| ≤ δ . Therefore u[s]i j = ui j + 2ξ1 − ξ2 u[s]i j . The matrix B[s] is

row diagonally dominant and, so, u[s]i j ≤ 1. As a consequence

|u[s]i j −ui j| ≤ 3δ , (34)

i.e., an “only-one-row” perturbation causes in ui j an absolute variation of at most
3δ . Let α be a subset of [1 : i] and denote by uα

i j the entries of the U factor of a
matrix obtained from A through perturbations of the rows with indices in α , while
the remaining rows remain unchanged. Note that ũi j = u[1:i]

i j and that

|ũi j −ui j| ≤ |ũi j −u[1:i−1]
i j |+ |u[1:i−1]

i j −u[1:i−2]
i j |+ · · ·+ |u[1]i j −ui j| ≤ 3 iδ ,

where we have used (34) and the fact that all the matrices in the sequence of “only-
one-row” perturbations are row diagonally dominant. ⊓⊔

Proof of part (d) of Theorem 3 This proof does not follow the pattern of the one of
part (c) because the entries |ℓi j| are not bounded by 1. Instead, use (6), (26), part (b)
of Lemma 4 and part (b) of Lemma 7 to show

ℓ̃i j =
g̃( j)

i j

g̃( j)
j j

=
g( j)

i j +2 χ g( j)
ii

g( j)
j j (1+ξ1) · · ·(1+ξ j)

, (35)

where |ξ1| ≤ δ , . . . , |ξ j| ≤ δ and |χ| ≤
(
(1+δ ) j −1

)
. Define

ζ :=
1

(1+ξ1) · · ·(1+ξ j)
−1, and note |ζ | ≤ 1

(1−δ ) j −1.
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So, from (35) and (9), we get

ℓ̃i j =

ℓi j +2 χ
a( j)

ii

a( j)
j j

 (1+ζ ) and ℓ̃i j − ℓi j = ζ ℓi j +2 χ (1+ζ )
a( j)

ii

a( j)
j j

.

Now, take absolute values, triangular inequalities and get part (d) of Theorem 3. ⊓⊔

Proof of part (e) of Theorem 3 It follows directly from the use of (13), with δ instead
of u, in the bound of part (d). The only point to remark is that |ℓi j| =

∣∣∣a( j)
i j /a( j)

j j

∣∣∣ ≤
1+β j, because the Schur complement A( j)( j : n, j : n) is row diagonally dominant,
so its largest entry in absolute value is on the diagonal, i.e., |a( j)

i j | ≤ |a( j)
ii |. ⊓⊔

4 Error analysis of Q. Ye’s algorithm for the LDU factorization

This section is organized as follows. In Subsection 4.1 we state without proofs the
main results we have obtained for the errors committed by Algorithm 1 in Q. Ye’s
paper [42]. The proofs are presented in Subsections 4.2 and 4.3. In the first order
error analysis included in [42], all summations of nonnegative numbers are performed
with the method of compensated summation [30, Sec. 4.3]. In contrast, we use only
standard summation here and the error bounds we present are rigorous, i.e., they do
not neglect any high-order terms. The improvements that may be obtained from the
use of compensated summation are briefly explained in Subsection 4.4.

Recall that Algorithm 1 in [42] computes the LDU factorization of a row diago-
nally dominant matrix A with nonnegative diagonal entries, for which its diagonally
dominant parts v and off-diagonal entries AD are known. The most important fea-
ture of this algorithm is that in the kth stage of Gaussian elimination the parameters
(A(k+1)

D ,v(k+1)) of A(k+1) are obtained from the parameters (A(k)
D ,v(k)) of A(k) in such

a way that each entry of v(k+1) is a sum of nonnegative terms.
Our ability to obtain tiny error bounds relies on the perturbation results in The-

orem 3. As a consequence, the relative error bounds we get for the entries of D and
the absolute error bounds we get for the entries of U hold for any diagonal pivoting
strategy, while the absolute error bounds we get for the entries of L hold only for
complete-diagonal pivoting. These strategies were introduced in Section 2.

4.1 Main rounding error results and comments

Let P be the permutation matrix constructed in floating point arithmetic by Algorithm
1 in [42] when it is applied to a matrix A with a certain diagonal pivoting strategy. For
simplicity, we assume in the error analysis that the matrix A has been permuted by P
in advance, so that no permutations are needed in the process. The reader can find a
detailed description of the first stage of Algorithm 1 in [42] in Section 4.2 (just before
Lemma 8). The remaining stages consist in applying exactly the same procedure on
the corresponding Schur complements.
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Theorem 4 Let A = D(AD,v) ∈ Rn×n be a row diagonally dominant matrix with
nonnegative diagonal entries and assume that v ≥ 0 and AD are known. Let L̂, D̂ =
diag(d̂1, . . . , d̂n) and Û be the LDU factors of A computed by Algorithm 1 in [42] in
a computer with unit roundoff u and let L, D = diag(d1, . . . ,dn) and U be the exact
factors of A. Suppose that 36n3 u < 1. Then

(a) For any diagonal pivoting strategy

|d̂i −di| ≤ |di|
6ni2 u

1−6ni2 u
≤ |di|

6n3 u
1−6n3 u

, i = 1, . . . ,n;

(b) For any diagonal pivoting strategy

|ûi j −ui j| ≤ 8ni2 u < 8n3 u, 1 ≤ i < j ≤ n;

(c) For the complete-diagonal pivoting strategy

|ℓ̂i j − ℓi j| ≤ 14n j2 u < 14n3 u, 1 ≤ j < i ≤ n.

Remark 1 Observe that part (a) implies that d̂i = 0 if and only if di = 0, so Algorithm
1 in [42] determines exactly the rank of A. This was also shown in [42]. Therefore,
if rank(A) = r < n, then Algorithm 1 in [42] stops in floating point arithmetic after r
stages of Gaussian elimination have been performed. As a consequence, ûi j = ui j = 0
for r+1 ≤ i < j ≤ n, and ℓ̂i j = ℓi j = 0 for r+1 ≤ j < i ≤ n.

From Theorem 4 and the fact that L and U are unit triangular, we can get the
following normwise relative error bounds for L and U :

∥L̂−L∥M

∥L∥M
≤ 14n3 u,

∥Û −U∥M

∥U∥M
≤ 8n3 u, (36)

∥L̂−L∥1

∥L∥1
≤ 56

27
n4 u,

∥Û −U∥∞

∥U∥∞
≤ 32

27
n4 u. (37)

The n4 factor in (37) can be replaced by n3 if compensated summation is used in
Algorithm 1 in [42] (see Subsection 4.4), at the cost of modifying somewhat the
numerical constants and getting only first order error bounds in u.

4.2 Rounding error analysis of the first stage of Q. Ye’s algorithm

The proof of Theorem 4 follows an inductive argument on the size of the matrix. For
the error bound on the D factor this argument has the same flavor as the one in [35],
but for U and L the proofs are different. Before performing the induction, we need
to carefully analyze the errors committed in the first stage of Algorithm 1 in [42].
The perturbation theory developed in Section 3 plays a stellar role in this process, in
particular in Lemma 9 below.
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In order to simplify the presentation we introduce one more bit of notation. In
Section 2, A(2) = [a(2)i j ] ∈ Rn×n denoted the matrix obtained after the first stage of
Gaussian elimination is applied to A(1) := A ∈ Rn×n. We will denote in this section

A (2) := A(2)(2 : n,2 : n) ∈ R(n−1)×(n−1), (38)

i.e., the Schur complement of a11 in A. This is the submatrix of A(2) that is active in
the second stage of Gaussian elimination. The entries of the matrix A (2) = [a(2)i j ]ni, j=2

will be indexed from 2 to n. In addition, it is well known [17] that A (2) satisfies the
following two properties that are fundamental in the sequel:

1. If A (2) = L22D22U22 is the LDU factorization of A (2) and A = LDU is the LDU
factorization of A, then L22 = L(2 : n,2 : n), D22 = D(2 : n,2 : n) and U22 =U(2 :
n,2 : n).

2. If k ≥ 2, then the kth Schur complement [a(k)i j ]
n
i, j=k of A (recall (9)) is the (k−1)th

Schur complement of A (2).

To begin with, we recall how Algorithm 1 in [42] performs the first stage of Gaus-
sian elimination. The inputs are the parameters (A(1)

D ,v(1)) := (AD,v), v ≥ 0, corre-
sponding to A(1) := A. The outputs are: (a) the first entry d1 of D; (b) the first column
of L; (c) the first row of U ; and, (d) the parameters (A (2)

D ,v(2)(2 : n)) corresponding
to A (2). These outputs are computed as follows4:

1. a(1)ii = v(1)i +
n

∑
j=1
j ̸=i

|a(1)i j |, for i = 1, . . . ,n, and d1 = a(1)11 ;

2. ℓi1 = a(1)i1 /a(1)11 and u1i = a(1)1i /a(1)11 , for i = 2, . . . ,n;
3. a(2)i j = a(1)i j − ℓi1a(1)1 j for i, j = 2, . . . ,n, i ̸= j;
4. For i = 2, . . . ,n (see also [42, Theorem 1])

v(2)i = v(1)i +
n

∑
j=2
j ̸=i

(1− s(1)i j ) |a(1)i j |+ |ℓi1|v(1)1 +
n

∑
j=2

(1− t(1)i j ) |ℓi1| |a(1)1 j |, (39)

where s(1)i j = sign
(

a(2)i j

)
sign

(
a(1)i j

)
, and

t(1)i j =

−sign
(

a(2)i j

)
sign

(
a(1)i1

)
sign

(
a(1)1 j

)
, if i ̸= j

sign
(

a(1)i1

)
sign

(
a(1)1i

)
, if i = j.

Observe that v(2)i is a a sum of nonnegative terms because v(1) ≥ 0.

The second stage of Algorithm 1 in [42] applies the same to D(A
(2)

D ,v(2)(2 : n)) and
so on.

Lemma 8 establishes the rounding errors for the first stage of Algorithm 1 in [42].
The notation introduced in (14) is used in this lemma and in the rest of this section.

4 Note that Algorithm 1 in [42] needs to compute all the diagonal entries to determine the pivot, but the
only entry that is an output is d1 = a(1)11 because we assume that A has been permuted in advance.
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Lemma 8 Let â(1)ii for i = 1, . . . ,n, ℓ̂i1, û1i, for i = 2, . . . ,n, and (ÂD
(2)
, v̂(2)(2 : n)) be

the quantities computed in the first stage of Algorithm 1 in [42] applied to (A(1)
D ,v(1)),

where A = D(A(1)
D ,v(1)) ∈Rn×n. Let a(1)ii , ℓi1, and u1i be corresponding exact quanti-

ties. Then the following statements hold.

(a) â(1)ii = a(1)ii <n−1>. In particular, d̂1 = d1 <n−1>.
(b) ℓ̂i1 = ℓi1 <n> and û1i = u1i <n>.

(c) The computation of (ÂD
(2)
, v̂(2)(2 : n)) is equivalent to the following sequence of

operations:
1. Multiply each input parameter in (A(1)

D ,v(1)) by a factor <n+ 1>, getting
(Ã(1)

D , ṽ(1)). More precisely this means that ṽ(1)i = v(1)i <n+1> for i= 1, . . . ,n,
and ã(1)i j = a(1)i j <n+1> for i ̸= j, i, j = 1, . . . ,n, where the factors <n+1>
may be different for each parameter.

2. Obtain in exact arithmetic the parameters (ÃD
(2)
, ṽ(2)(2 : n)) corresponding

to (Ã(1)
D , ṽ(1)).

3. Multiply each parameter of (ÃD
(2)
, ṽ(2)(2 : n)) by a factor <4n>, getting

(ÂD
(2)
, v̂(2)(2 : n)).

This sequence of operations is represented graphically as follows:

computed

(A(1)
D ,v(1)) −−−−−−−−−→ (ÂD

(2)
, v̂(2)(2 : n))

perturbed

y
x perturbed

(Ã(1)
D , ṽ(1)) −−−−−−−−−→ (ÃD

(2)
, ṽ(2)(2 : n))

exact

Proof Parts (a) and (b) follows from standard accumulation of rounding errors and
the fact that a(1)ii is obtained as a summation of nonnegative terms. Simply follow [30,
Section 3.1] and note a(1)ii (1−u)n−1 ≤ â(1)ii ≤ a(1)ii (1+u)n−1.

For part (c), we will show that the parameters (Ã(1)
D , ṽ(1)) are as follows:

ṽ(1) = v(1) and, for i ̸= j, ã(1)i j =

{
a(1)i j if i = 1 or j = 1

a(1)i j <n+1> otherwise.
(40)
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To this purpose, let 1+ξi j =<n+1>, and note that for i ̸= j, with 2 ≤ i, j ≤ n,

â(2)i j =

a(1)i j −
a(1)i1 a(1)1 j

a(1)11

(1+ξi j)

 <1>

=

 a(1)i j

1+ξi j
−

a(1)i1 a(1)1 j

a(1)11

 (1+ξi j)<1>=

ã(1)i j −
a(1)i1 a(1)1 j

a(1)11

 <n+2>

= ã(2)i j <n+2>,

where ã(1)i j := a(1)i j /(1+ξi j). Therefore ÂD
(2)

satisfies part (c) for (Ã(1)
D , ṽ(1)) defined

in (40). Next, we prove that v̂(2)(2 : n) also satisfies part (c) for the same (Ã(1)
D , ṽ(1)).

Consider the computed signs ŝ (1)
i j and t̂ (1)

i j appearing in (39), the corresponding

exact signs s̃ (1)
i j and t̃ (1)

i j for (Ã(1)
D , ṽ(1)), and observe

ŝ (1)
i j = s̃ (1)

i j and t̂ (1)
i j = t̃ (1)

i j .

Now, for i = 2, . . . ,n, define the auxiliary variables

w(2)
i = v(1)i +

n

∑
j=2
j ̸=i

(1− s̃ (1)
i j ) |a(1)i j |+ |ℓi1|v(1)1 +

n

∑
j=2

(1− t̃ (1)
i j ) |ℓi1| |a(1)1 j |,

and proceed as in [30, Section 3.1] to show5

v̂(2)i = w(2)
i <3n−1> . (41)

On the other hand, by (40), the exact entries of ṽ(2)(2 : n) for (Ã(1)
D , ṽ(1)) are

ṽ(2)i = v(1)i +
n

∑
j=2
j ̸=i

(1− s̃ (1)
i j ) |ã(1)i j |+ |ℓi1|v(1)1 +

n

∑
j=2

(1− t̃ (1)
i j ) |ℓi1| |a(1)1 j |.

It is straightforward to prove that ṽ(2)i = w(2)
i <n+1>. Combine this with (41) to get

v̂(2)i = ṽ(2)i <4n>, which proves the result. ⊓⊔

A trivial but key observation in subsequent developments is that the LDU factors

computed by Algorithm 1 in [42] applied to (ÂD
(2)
, v̂(2)(2 : n)) are precisely

L̂(2 : n,2 : n) =: L̂22, D̂(2 : n,2 : n) =: D̂22, Û(2 : n,2 : n) =: Û22, (42)

where recall that L̂, D̂ and Û are the computed factors of A = D(A(1)
D ,v(1)) ∈ Rn×n.

Related with this fact, we will also need the exact LDU factors of the matrix A ′
2 :=

D (ÂD
(2)
, v̂(2)(2 : n)) ∈ R(n−1)×(n−1), that are denoted by

A ′
2 = D (ÂD

(2)
, v̂(2)(2 : n)) = L′

22D′
22U ′

22, (43)

5 As in [42], we start the computation of v(2)i with the summation v(1)i + |ℓi1|v
(1)
1 .
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and their entries are indexed from 2 to n. These exact factors are needed because the
essential induction hypothesis in Section 4.3 is that Algorithm 1 in [42] is accurate
for matrices of size (n−1)× (n−1), and so that L̂22, D̂22 and Û22 are, respectively,
close to L′

22, D′
22, and U ′

22 in a sense that will be made precise later. Our goal now is
to use the perturbation theory in Section 3 for relating in Lemma 9, L′

22, D′
22, and U ′

22
with L(2 : n,2 : n), D(2 : n,2 : n) and U(2 : n,2 : n), where L, D and U are the exact
factors of A=D(A(1)

D ,v(1))∈Rn×n. For technical reasons that will be clear in Section
4.3, we also relate in Lemma 9 the exact diagonal entries of the Schur complements
of A with the exact diagonal entries of the Schur complements of A ′

2 .

Lemma 9 Use the same notation and assumptions as in Lemma 8, and denote r =
rank

(
D(A(1)

D ,v(1))
)
> 0. Let L, D and U be the exact LDU factors of A=D(A(1)

D ,v(1)),

let L′
22 = [ℓ′i j]

n
i, j=2, D′

22 = diag(d′
2, . . . ,d

′
n) and U ′

22 = [u′i j]
n
i, j=2 be the exact LDU fac-

tors of A ′
2 in (43), and let Ã := D(Ã(1)

D , ṽ(1)). For 2 ≤ k ≤ min{r+1,n}, let [a(k)ii ]ni=k,

[ã(k)ii ]ni=k, and [a′(k)ii ]ni=k be, respectively, the exact diagonal entries of the Schur com-
plements of A, Ã, and A ′

2 . Then the following statements hold.

(a) rank(A) = rank(Ã) = 1+ rank(A ′
2).

(b) For 2 ≤ k ≤ min{r+1,n} and k ≤ i ≤ n

a′(k)ii = a(k)ii <10nk−13n+2k−1> .

In particular, d′
p = dp <10np−13n+2p−1> for 2 ≤ p ≤ n, since dp = a(p)

pp .
(c) For 2 ≤ i ≤ n−1 and j > i

|u′i j −ui j| ≤ u(15ni−12n+3i).

(d) In addition, let r′ = min{r,n−1} and β2,β3, . . . ,βr′ be numbers such that 0 ≤ βk,
(1+βk) |a

(k)
kk | ≥ |a(k)ii | and (1+βk) |ã

(k)
kk | ≥ |ã(k)ii |, for k = 2, . . . ,r′ and k < i ≤ n.

Let 36n3u < 1. Then, for 2 ≤ j ≤ n−1 and i > j,

|ℓ′i j − ℓi j| ≤ u(1+β j)
2
3
(27n j−22n+5 j).

Proof Parts (a), (b) and (c) are direct consequences of Theorem 3 and Lemma 2. We
simply sketch the proofs. Throughout this proof L̃, D̃ and Ũ denote the exact LDU
factors of Ã := D(Ã(1)

D , ṽ(1)).
Note first that according to Lemma 8, one can consider that Ã is obtained from

A by applying a sequence of n+ 1 perturbations that can be: (1) of type (15) with
δ = u (recall (19) and (20)); or, (2) perturbations that are reversals of type (15) (i.e.,
with the roles of the matrices A and Ã in (15) exchanged) with δ = u and that take
into account the factors (1+ψi)

−1 in <n+ 1>. Analogously, A ′
2 is obtained from

D(ÃD
(2)
, ṽ(2)(2 : n)) as a sequence of 4n perturbations of type (15) with δ = u or

reversals of them.
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Note that part (a) of Theorem 3 and the equality rank(Ã)= 1+rank(D(ÃD
(2)
, ṽ(2)(2 :

n))) imply part (a). Lemma 2 implies

ã(k)ii = a(k)ii <(2k−1)(n+1)> and a′(k)ii = ã(k)ii <(2k−3)4n>, (44)

where in the last equality we have used that [ã(k)i j ]
n
i, j=k is the (k−1)th Schur comple-

ment of D(ÃD
(2)
, ṽ(2)(2 : n)). Therefore

a′(k)ii = a(k)ii <(2k−1)(n+1)+(2k−3)4n>,

which is the result in part (b). Part (c) of Theorem 3 implies

|ũi j −ui j| ≤ 3(n+1) iu and |ũi j −u′i j| ≤ 12n(i−1)u,

where in the last inequality we have used that ũi j corresponds to the (i−1)th row of

the U factor of D(ÃD
(2)
, ṽ(2)(2 : n)). Therefore

|u′i j −ui j| ≤ (3(n+1) i+12n(i−1))u,

which is the result in part (c) for the entries of U that are not trivial according to
the rank of A. The entries of U that are identically equal to 0 or 1 (see Definition 1)
satisfy part (c) trivially.

The proof of part (d) requires more work. Lemma 8 and (13) imply

|ṽ(1)− v(1)| ≤ γn+1 v(1) and |Ã(1)
D −A(1)

D | ≤ γn+1 |A(1)
D |.

Observe that γn+1 < 1 because 36n3u < 1. From part (e) of Theorem 3, we get

|ℓ̃i j − ℓi j| ≤ (1+β j)
j γn+1

1− j γn+1

(
3+

2 j γn+1

1− j γn+1

)
.

The condition 36n3u < 1 together with some algebraic manipulations gives

|ℓ̃i j − ℓi j| ≤ (1+β j)
2
3

5 j(n+1)u. (45)

Lemma 8 and (13) also imply

|v̂(2)(2 : n)− ṽ(2)(2 : n)| ≤ γ4n ṽ(2)(2 : n) and
∣∣∣∣ÂD

(2)
− ÃD

(2)
∣∣∣∣≤ γ4n

∣∣∣∣ÃD
(2)
∣∣∣∣ .

Observe that γ4n < 1 because 36n3u < 1. From part (e) of Theorem 3, we get

|ℓ′i j − ℓ̃i j| ≤ (1+β j)
( j−1)γ4n

1− ( j−1)γ4n

(
3+

2( j−1)γ4n

1− ( j−1)γ4n

)
,

where we have used that ℓ̃i j corresponds to the ( j − 1)th column of the L factor of

D(ÃD
(2)
, ṽ(2)(2 : n)). The condition 36n3u < 1 together with some algebraic manip-

ulations gives

|ℓ′i j − ℓ̃i j| ≤ (1+β j)
2
3

22( j−1)nu. (46)

Combine (45) and (46) to get the result in part (d). ⊓⊔
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4.3 Inductive proof of Theorem 4

We can now prove Theorem 4. The proof of part (a) follows directly from Lemma 10
below by using dk = a(k)kk . The errors in the diagonal entries of the Schur complements
in Lemma 10 will be used in the proof of part (c) of Theorem 4, where it is impor-
tant to show that complete-diagonal pivoting in floating point arithmetic implies that
the initial matrix A = D(AD,v) is almost arranged for complete-diagonal pivoting in
exact arithmetic. Recall that we assume that A has been permuted in advance.

Lemma 10 Let A = D(AD,v) ∈ Rn×n be a row diagonally dominant matrix with
nonnegative diagonal entries and assume that v ≥ 0 and AD are known. Let r =
rank(D(AD,v)) > 0. Let us apply Algorithm 1 in [42] to (AD,v) with any diagonal
pivoting strategy in a computer with unit roundoff u. Then the following statements
hold.

(a) The off-diagonal entries and the diagonally dominant parts computed after r
stages of Gaussian elimination satisfy (Â(r+1)

D (r + 1 : n,r + 1 : n), v̂(r+1)(r + 1 :
n)) = (0,0), i.e., Algorithm 1 in [42] computes exactly the rank of A and stops
after r stages.

(b) For 1 ≤ k ≤ min{r + 1,n}, let [a(k)ii ]ni=k and [â(k)ii ]ni=k be, respectively, the exact
diagonal entries of the Schur complements of A and the corresponding computed
entries. Then,

â(k)ii = a(k)ii <6nk2> for i = k, . . . ,n.

Proof Before we get into the details of the proof, note that a11 = a(1)11 > 0 and there-
fore â11 = â(1)11 > 0 by Lemma 8. This follows from the fact that (AD,v) ̸= 0, because
the rank of A is not zero. So, taking into account our definition in Section 2, any di-
agonal pivoting strategy will select as first pivot a nonzero diagonal entry. Recall also
that we are assuming that A has been permuted in advance according to the diagonal
pivoting strategy that we are using.

Part (a). The result is obviously true for size n = 1. Assume that it holds for
(n−1)×(n−1) matrices. With the notation of Lemma 8: stages 2,3, . . . of Algorithm
1 in [42] on (AD,v)= (A(1)

D ,v(1)) are precisely stages 1,2, . . . of Algorithm 1 in [42] on

(ÂD
(2)
, v̂(2)(2 : n)). By the induction hypothesis the rank of A ′

2 = D (ÂD
(2)
, v̂(2)(2 :

n)) ∈R(n−1)×(n−1) is exactly computed by Algorithm 1 in [42] and, by Lemma 9 (a),
also the rank of A.

Part (b). We follow again an inductive argument. More precisely, assume that

â(k)ii = a(k)ii <Φ(n,k)>, (47)

where Φ(n,k) is a constant that depends on n and k but not on A. Obviously (47)
holds for n = k = 1 with Φ(1,1) = 0, since with n = 1 there is nothing to compute,
and, more general, (47) also holds for k = 1 and any n ≥ 1 with Φ(n,1) = n−1, as
a consequence of Lemma 8 (a). Our aim is to verify (47) inductively and at the same
time to derive a recurrence for the unknown constant Φ(n,k).
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Our induction hypothesis is that for any matrix B = D(BD,vB) ∈ R(n−1)×(n−1),
vB ≥ 0, Algorithm 1 in [42] with any diagonal pivoting strategy computes the diagonal
entries of the Schur complements of B with errors,

b̂(k)ii = b(k)ii <Φ(n−1,k)> (48)

for k = 1, . . . ,min{rank(B)+ 1,n− 1} and i = k, . . . ,n− 1. Therefore, this happens

in particular for the matrix A ′
2 = D (ÂD

(2)
, v̂(2)(2 : n)) ∈ R(n−1)×(n−1) appearing in

Lemmas 9 and 8. Recall that the computed (k − 1)th Schur complement of A ′
2 is

precisely [â(k)i j ]
n
i, j=k and that with the notation of Lemma 9 the corresponding exact

Schur complement of A ′
2 is [a′(k)i j ]ni, j=k. So (48) implies,

â(k)ii = a′(k)ii <Φ(n−1,k−1)> (49)

for k = 2, . . . ,min{r + 1,n} and i = k, . . . ,n. Combine this equation with Lemma 9
(b) to get

â(k)ii = a(k)ii <Φ(n−1,k−1)+10nk−13n+2k−1>,

and from (47)

Φ(n,k) = Φ(n−1,k−1)+10nk−13n+2k−1, k = 2,3, . . . (50)

This recurrence relation, together with Φ(n,1) = n−1 for all n ≥ 1, determines com-
pletely Φ(n,k) for all n ≥ k ≥ 1. It is easy to check inductively that Φ(n,k)≤ 6nk2.

⊓⊔

Proof of part (a) of Theorem 4 If rank(A) = r, then dr+1 = · · ·= dn = 0. Lemma 10
(a) implies that d̂r+1 = · · ·= d̂n = 0. So |d̂i−di|= 0, for i= r+1, . . . ,n. For d1, . . . ,dr,
the result follows from Lemma 10 (b), a(i)ii = di, and (13). ⊓⊔

Proof of part (b) of Theorem 4 We follow an inductive argument and assume that

|ûi j −ui j| ≤ uΨ(n, i) for 1 ≤ i < j ≤ n, (51)

where Ψ(n, i) is a constant that depends on n and i but not on A. Observe that Lemma
8 (b), (13), the fact that U is row diagonally dominant, and 36n3 u < 1 imply

|û1 j −u1 j| ≤ |u1 j|
nu

1−nu
< u2n for 1 < j ≤ n.

Therefore, (51) holds for i = 1 and any n ≥ 1 with Ψ(n,1) = 2n.
To derive a recurrence for the unknownΨ(n, i), we assume that for any matrix B=

D(BD,vB) ∈ R(n−1)×(n−1), vB ≥ 0, Algorithm 1 in [42] with any diagonal pivoting
strategy computes the entries (i, j) of the U-factor of B with errors as in (51) but
with n− 1 instead of n, i.e., with errors uΨ(n− 1, i). In particular, this happens for

the matrix A ′
2 = D (ÂD

(2)
, v̂(2)(2 : n)) ∈R(n−1)×(n−1) appearing in Lemmas 9 and 8.
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The computed U-factor of A ′
2 is precisely [ûi j]

n
i, j=2 and, with the notation of Lemma

9, the exact U-factor of A ′
2 is [u′i j]

n
i, j=2. So,

|ûi j −u′i j| ≤ uΨ(n−1, i−1) for 2 ≤ i < j ≤ n, (52)

where we have used that the entries u′i j are in the (i−1)th row of the U-factor of A ′
2 .

Combine (52) with Lemma 9 (c) and get

|ûi j −ui j| ≤ u (Ψ(n−1, i−1)+15ni−12n+3i) for 2 ≤ i < j ≤ n.

This and (51) give

Ψ(n, i) =Ψ(n−1, i−1)+15ni−12n+3i for 2 ≤ i ≤ n.

This recurrence relation, together with Ψ(n,1) = 2n for all n ≥ 1, determines com-
pletely Ψ(n, i) for all n ≥ i ≥ 1. It is easy to check inductively that Ψ(n, i)≤ 8ni2. ⊓⊔

Proof of part (c) of Theorem 4 The proof of this part needs more work than the proofs
of parts (a) and (b). The main difficulty comes from the fact that an effective applica-
tion of Lemma 9 (d) requires to determine the numbers β2, . . . ,βr in that lemma. For
this purpose, recall that in this part we assume that complete-diagonal pivoting has
been used in Algorithm 1 in [42]. This means that the computed diagonal entries of
the Schur complements satisfy

|â(k)kk | ≥ |â(k)ii |, k ≤ i ≤ n, 1 ≤ k ≤ min{r,n−1}. (53)

But from Lemma 10 (b), we can only guarantee for the exact entries that

<12nk2> |a(k)kk | ≥ |a(k)ii |, k ≤ i ≤ n, 1 ≤ k ≤ min{r,n−1}.

This inequality together with (13) and (14) imply(
1+

12nk2 u
1−12nk2 u

)
|a(k)kk | ≥ |a(k)ii |, k ≤ i ≤ n, 1 ≤ k ≤ min{r,n−1}. (54)

Now, use the notation in Lemma 9, equation (44) in the proof of Lemma 9 and equa-
tion (49) in the proof of Lemma 10 to get

â(k)ii = ã(k)ii <Φ(n−1,k−1)+8nk−12n>, k ≤ i ≤ n, 2 ≤ k ≤ min{r,n−1}.

From (50)
Φ(n−1,k−1)+8nk−12n ≤ Φ(n,k)≤ 6nk2.

So, â(k)ii = ã(k)ii <6 nk2> and from (53)(
1+

12nk2 u
1−12nk2 u

)
|ã(k)kk | ≥ |ã(k)ii |, k ≤ i ≤ n, 2 ≤ k ≤ min{r,n−1}. (55)

Equations (54) and (55) imply that we can take as numbers βk, k = 2, . . . ,min{r,n−
1}, in Lemma 9 (d),

βk =
12nk2 u

1−12nk2 u
≤ 1/3

1− (1/3)
=

1
2
, (56)
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where we have used that 36n3u < 1.
The rest of the proof follows the same pattern as the one for Theorem 4 (b). We

simply sketch it. Assume that

|ℓ̂i j − ℓi j| ≤ uΩ(n, j) for 1 ≤ j < i ≤ n. (57)

Lemma 8 (b), the fact that complete-diagonal pivoting is used in floating point arith-
metic (so |ℓ̂i j| ≤ 1) and 36n3 u < 1 imply

|ℓ̂i1 − ℓi1| ≤ |ℓ̂i1|
nu

1−nu
< u2n for 1 < i ≤ n,

so (57) holds for j = 1 and any n ≥ 1 with Ω(n,1) = 2n.
Assume that for any matrix B = D(BD,vB) ∈ R(n−1)×(n−1), vB ≥ 0, Algorithm

1 in [42] with complete-diagonal pivoting computes the entries (i, j) of the L-factor

of B with errors uΩ(n− 1, j). So, this happens for A ′
2 = D (ÂD

(2)
, v̂(2)(2 : n)) ∈

R(n−1)×(n−1) in Lemma 9. The computed L-factor of A ′
2 is [ℓ̂i j]

n
i, j=2 and, with the

notation of Lemma 9, the exact L-factor of A ′
2 is [ℓ′i j]

n
i, j=2. Therefore, by the induction

assumption,

|ℓ̂i j − ℓ′i j| ≤ uΩ(n−1, j−1) for 2 ≤ j < i ≤ n, (58)

because the entries ℓ′i j are in the ( j − 1)th column of the L-factor of A ′
2 . Combine

(58) with Lemma 9 (d) and (56) to get

|ℓ̂i j − ℓi j| ≤ u (Ω(n−1, j−1)+27n j−22n+5 j ) for 2 ≤ j < i ≤ n.

This and (57) give

Ω(n, j) = Ω(n−1, j−1)+27n j−22n+5 j for 2 ≤ j ≤ n.

This recurrence relation is completed with Ω(n,1) = 2n for all n ≥ 1. By induction,
it can be checked that Ω(n, j)≤ 14n j2. ⊓⊔

4.4 Improving the bounds through compensated summation

Algorithm 1 in [42] requires to compute summations of nonnegative numbers in sev-
eral instances. We have shown in Theorem 4 excellent error bounds for the computed
LDU factors when these summations are computed through standard recursive sum-
mation [30, Sec. 4.1]. In fact, the componentwise errors in Theorem 4 are nearly
optimal because the cost of Algorithm 1 in [42] is O(n3). These error bounds can
be further improved if summations of nonnegative numbers are computed with the
method of compensated summation [30, Sec. 4.3] and we discuss briefly in this sec-
tion this improvement. Nevertheless, we do not recommend at all to use compensated
summation since we have not observed any significative improvement in the accuracy
in practice, and the total cost of the algorithm is increased by almost a factor 4.

If compensated summation is used to sum n nonnegative numbers, then the rel-
ative error is bounded by 2u+O(nu2), i.e., the number of summands only affects
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the error in second order terms. Then the relative errors and relative perturbations
established in Lemma 8 are of the type cu+O(nu2), where c is a small integer con-
stant. The reader may check that factors n also disappear from the first order terms
in the rest of the error analysis presented in subsections 4.2 and 4.3. Finally the error
bounds committed by Algorithm 1 in [42] when compensated summation is used are

(a) For any diagonal pivoting strategy

|d̂i −di| ≤ |di|(c1 i2 u+O(ni2 u2)), i = 1, . . . ,n;

(b) For any diagonal pivoting strategy

|ûi j −ui j| ≤ (c2 i2 u+O(ni2 u2)), 1 ≤ i < j ≤ n;

(c) For the complete-diagonal pivoting strategy

|ℓ̂i j − ℓi j| ≤ (c3 j2 u+O(n j2 u2)), 1 ≤ j < i ≤ n,

where c1, c2 and c3 are small integer constants. These bounds improve those of Theo-
rem 4 up to first order in u, but the higher order terms remain unknown. These bounds
allow us to reduce by one the exponent of n in the normwise bounds (36) and (37).

5 Conclusions

We have proved that tiny relative componentwise perturbations of the diagonally
dominant parts and the off-diagonal entries of a (row) diagonally dominant matrix
with nonnegative diagonal entries produce tiny relative variations in its L, D, and U
factors obtained through complete-diagonal pivoting. These tiny relative variations
are componentwise for D and normwise for L and U . This perturbation result has
been the key to prove that Algorithm 1 in [42] for the LDU factorization with com-
plete diagonal pivoting computes accurately rank revealing decompositions of diago-
nally dominant matrices, and so that accurate computations of SVDs and solutions of
linear systems are possible at cost O(n3) for any diagonally dominant matrix stored
in a computer, independently of its traditional condition number.

The perturbation theory in this paper can be combined with the perturbation the-
ory for the SVD in [12] to prove that the diagonally dominant parts and off diagonal
entries determine to high relative accuracy the SVD of any diagonally dominant ma-
trix. However, from [43], it seems possible to develop a sharper perturbation theory
for the SVD, independent of the intermediate LDU factorization and of the condition
numbers of L and U . This remains as an open problem.
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22. Drmač, Z.: Accurate computation of the product induced singular value decomposition with applica-

tions. SIAM J. Num. Anal. 35(5), 1969–1994 (1998)
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