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Abstract. We introduce a new family of strong linearizations of matrix polynomials—which we
call “block Kronecker pencils”—and perform a backward stability analysis of complete polynomial
eigenproblems. These problems are solved by applying any backward stable algorithm to a block
Kronecker pencil, such as the staircase algorithm for singular pencils or the QZ algorithm for regular
pencils. This stability analysis allows us to identify those block Kronecker pencils that yield a
computed complete eigenstructure which is exactly that of a slightly perturbed matrix polynomial.
The global backward error analysis in this work presents for the first time the following key properties:
it is a rigurous analysis valid for finite perturbations (i.e., it is not a first order analysis), it provides
precise bounds, it is valid simultaneously for a large class of linearizations, and it establishes a
framework that may be generalized to other classes of linearizations. These features are related to
the fact that block Kronecker pencils are a particular case of the new family of “strong block minimal
bases pencils”, which are robust under certain perturbations and, so, include certain perturbations
of block Kronecker pencils.
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1. Introduction. Matrix polynomials appear in many applications in engineer-
ing, mechanics, control, linear systems theory, and computer-aided geometric design.
They may arise directly or as approximations of highly nonlinear eigenvalue problems.
The classical works [36, 47, 66] and the modern surveys [40, 60, 70] include discussions
of different applications of matrix polynomials. Those readers unfamiliar with matrix
polynomials can find in Section 2 most of the concepts mentioned in this introduction.

Square regular matrix polynomials are related to polynomial eigenvalue problems
(PEPs), i.e., to the computation of all of the eigenvalues of the polynomial, while sin-
gular matrix polynomials are related to complete polynomial eigenproblems (CPEs),
i.e., to the computation of all of the eigenvalues and of all of the so-called minimal in-
dices of the polynomial. Although in the last years the main focus has been on regular
matrix polynomials, problems related to singular matrix polynomials are also quite
common. Thus, in engineering practice, singular problems allow to add redundancy
into the models and, in this way, to regularize ill-conditioned problems [5, 49, 59].
Moreover, singular matrix polynomials are fundamental in the area of systems and
control, where they model systems of differential equations whose behavior has to be
“controlled”. This was nicely synthesized in the pioneering work of Rosenbrock [66],
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who introduced quadruples of matrix polynomials {T (λ), U(λ), V (λ),W (λ)} to model
such systems. The Smith form [33] of the matrix polynomials

Pp(λ) = T (λ), Pz(λ) =

[
T (λ) −U(λ)
V (λ) W (λ)

]
,

and of the first block row and the first block column of Pz(λ), denoted as Pc(λ) and
Po(λ), respectively, define the so-called poles and zeros of the transfer function of
such systems, as well as the notions of controllability and observability. The matrix
polynomial Pp(λ) is square and invertible and defines the poles of the system, which
are its natural frequencies. The matrix polynomial Pz(λ) may be non-square or sin-
gular and describes the zeros of the system, which are the frequencies that are filtered
by the system, and the minimal indices that characterize its left and right “singular”
null space structures. Finally, the Smith form of the non-square matrix polynomials
Pc(λ) and Po(λ) yields conditions on the controllability and observability of the sys-
tem. The importance of computing the finer details of the Smith zeros and minimal
indices of a matrix polynomial was already stressed in the eighties [72, 47], and was
revived later in the behavioral modeling of dynamical systems [57]. It also appears in
other problems in this area, as, e.g., in deadbeat control problems [73]. In all of these
problems it is very important to have reliable numerical algorithms for computing the
relevant structural information of potentially singular matrix polynomials.

The numerical solution of PEPs and CPEs is usually performed by embedding the
coefficients of the associated matrix polynomial into a larger linear matrix polynomial,
or matrix pencil, called a linearization, and then applying well-established algorithms
for matrix pencils to the linearization, like the QZ algorithm in the regular case [38],
or the staircase algorithm in the singular case [71], potentially enhanced with the
stratification of the orbits of pencils [28, 29]. This linearization approach for solving
numerically PEPs and CPEs was proposed for the first time in [72, 74]. We emphasize
that particular examples of linearizations of matrix polynomials had been used before
for different purposes. For instance, a variant of the Frobenius companion linearization
of any matrix polynomial (regular or singular) is considered in [37, Section 3.4], where
some interesting properties of this Frobenius-like linearization are established. Formal
definitions of linearization and strong linearization of regular matrix polynomials can
be found in [36] and [35], respectively, and in [12] for singular matrix polynomials.
A thorough treatment of the definition of linearization and strong linearization and
their implications can be found in [17].

The linearizations used most often to solve PEPs and CPEs are the well known
Frobenius companion forms. They are used in [74] and in the command polyeig

of MATLAB. They have many favorable properties; in particular, it was proven in
[74] that they yield computed solutions of PEPs and CPEs which are exactly those
of slightly perturbed matrix polynomials (i.e., from the polynomial point of view
they have perfect structured backward stability). However, it is well known that the
Frobenius companion forms do not preserve the algebraic structures that are often
present in the matrix polynomials arising in applications. Therefore, the rounding
errors inherent to numerical computations may destroy qualitative properties of the
eigenstructures of such polynomials when they are computed via the Frobenius forms.
In addition, it is also known that Frobenius forms do not deliver accurate solutions
of PEPs when the matrix coefficients of the polynomial have very different norms;
this problem has to date only been addressed in the quadratic case [41, 78]. These
drawbacks have motivated an intense activity in the last few years towards the de-
velopment and analysis of new classes of linearizations of matrix polynomials, with
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special emphasis on linearizations that preserve certain structures important in ap-
plications (see, as a small sample, [1, 3, 6, 7, 9, 11, 14, 15, 31, 43, 54, 55, 62, 63, 77]).

A key open problem in this area is that global backward error analyses of PEPs
and CPEs solved by the new classes of linearizations have not yet been developed,
and, so, it is not known if their use combined with the QZ or the staircase algorithm
is backward stable from the polynomial point of view. The only backward error anal-
yses available in this context are the “local” residual analyses valid for each particular
computed eigenpair in the case of the linearizations in vector spaces [42, 44, 69, 78],
and a few first order global backward error analyses valid for particular “colleague”
linearizations [51, 53, 64] or for the Frobenius linearizations [74]. Two obstacles for ex-
tending these global backward error analyses to other classes of linearizations are that
these analyses are very particular, since they make use of the highly specific structures
of the considered linearizations, and that the new classes of linearizations are very
restricted in the sense that they are highly structured and, so, are not robust under
the unstructured perturbations coming from the backward errors of the algorithms.
Thus, it is not clear if they are still linearizations of some matrix polynomial when
they are perturbed, and even less of what polynomial they could be linearizations.

In order to overcome these obstacles, we introduce in this paper two new families
of strong linearizations of general matrix polynomials—square or rectangular, regular
or singular—whose minimal indices are related to those of the matrix polynomial via
constant uniform shifts. We call these families the strong block minimal bases pencils,
and a subfamily of it the block Kronecker pencils. Strong block minimal bases pen-
cils are defined in an abstract way in terms of the classical concept of dual minimal
bases [32]. This allows us to prove that they are always strong linearizations of easily
described matrix polynomials in a straightforward and general way and that simple
relationships exist between their minimal indices and those of the matrix polynomial.
These properties are inherited by the block Kronecker pencils, which include—modulo
permutations—all of the Fiedler and proper generalized Fiedler pencils as very partic-
ular cases (see the extended version of this paper [25, Section 4] and [10]), and which
have the property of being easily constructed in terms of the polynomial coefficients.

Strong block minimal bases pencils have, in practice, only one structural feature,
that is the presence of a zero block, since the other ingredients of their definition are
polynomial minimal bases and “generically” all matrix polynomials of proper sizes are
minimal bases [75]. So, the class of strong block minimal bases pencils is robust un-
der perturbations that preserve that zero block and, in addition, it is easy to describe
the matrix polynomials of which they are linearizations. These properties enable
us to perform a global backward error analysis of PEPs and CPEs solved via block
Kronecker pencils, because arbitrary perturbations of these pencils lead, after some
manipulations, to other strong block minimal bases pencils with similar properties.
This error analysis has the following novel properties: (1) it is valid for perturbations
with finite norms, in contrast to previous analyses which are valid only to first order;
(2) it delivers precise bounds, in contrast to other analyses which only provide vague
big-O bounds; (3) it is valid simultaneously for a very large class of linearizations,
in contrast to other analyses that are specific for particular linearizations; and (4)
it may be generalized to other families of strong block minimal bases pencils. As a
corollary, this analysis solves the open problem of proving that the QZ algorithm,
in the regular case, or the staircase algorithm, in the singular case, applied to any
Fiedler or proper generalized Fiedler pencil compute complete eigenstructures of ma-
trix polynomials that enjoy perfect structured backward stability from the polynomial
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point of view, i.e., the computed complete eigenstructure is the exact one of a nearby
matrix polynomial.

We emphasize that this backward error analysis does not imply that the eigenval-
ues and/or minimal indices of the matrix polynomial are accurately computed, since
they are intrinsically ill-conditioned, or even ill-posed, when the eigenvalues are close
to be multiple or the minimal indices are not generic [28, 29]. However, note that
our results guarantee that if a backward stable stratification-enhanced staircase algo-
rithm [29] is used on a block Kronecker pencil, then, although the computed complete
eigenstructure may be quite different from the exact one, it always corresponds (after
a fixed constant shift of the minimal indices) to the exact complete eigenstructure of
a nearby matrix polynomial.

The paper is organized as follows. Section 2 presents a summary of basic concepts.
In Section 3, the strong block minimal bases pencils are introduced and their prop-
erties are established. Section 4 gives the definition of block Kronecker pencils and
studies their properties. The global backward error analysis of complete polynomial
eigenproblems solved by means of block Kronecker pencils is the subject of Section
5. Some conclusions and lines of future research are discussed in Section 6. Finally,
the Appendices present long technical proofs of some results needed in the paper. For
brevity, this paper does not contain recovery procedures of eigenvectors and minimal
bases of a matrix polynomial from those of its strong block minimal bases pencils or
of its block Kronecker pencils. These results can be found in [25, Section 7].

2. Basic concepts, auxiliary results, and notation. Throughout the paper
we use the following notation. Given an arbitrary field F, we denote by F[λ] the ring
of polynomials in the variable λ with coefficients in F and by F(λ) the field of rational
functions with coefficients in F. The set of m × n matrices with entries in F[λ] is
denoted by F[λ]m×n and is also called the set of m × n matrix polynomials. In this
context, row or column vector polynomials are just matrix polynomials with m = 1
or n = 1. F(λ)m×n denotes the set of m× n rational matrices. Given two matrices A
and B, A⊕B denotes their direct sum, i.e., A⊕B = diag(A,B), and A⊗B denotes
their Kronecker product [45]. The algebraic closure of F is denoted by F. The results
in Section 5 and Subsection 2.1 assume that F = R or F = C, while the rest of results
remain valid in any field.

A matrix polynomial P (λ) ∈ F[λ]m×n is said to have grade d if it is written as

P (λ) = Pdλ
d + · · ·+ P1λ+ P0, with P0, . . . , Pd ∈ Fm×n, (2.1)

where any of the coefficient matrices Pk, including Pd, may be the zero matrix. As
usual, the degree of P (λ), denoted by deg(P ), is the maximum integer k such that Pk
is a nonzero matrix. Thus, the degree of P (λ) is fixed while its grade d is a choice
that must satisfy d ≥ deg(P ). The concept of grade has been used previously in
[17, 56] and is convenient when the degree of a polynomial is not known in advance.
Throughout this paper when the grade of P (λ) is not explicitly stated, we consider
its grade equal to its degree. A matrix polynomial of grade 1 is called a matrix pencil.

For any d ≥ deg(P ) the d-reversal matrix polynomial of P (λ) is defined as

revdP (λ) := λdP (λ−1).

Observe that if P (λ) is assumed to have grade d, then it is assumed that revdP (λ)
has also grade d, but that the degree of revdP (λ) may be different than the degree of
P (λ), even in the case d = deg(P ).
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We define the rank of a matrix polynomial P (λ) ∈ F[λ]m×n as its rank over the
field F(λ), i.e., as the size of the largest non-identically zero minor of P (λ) [33], and
is denoted by rank(P ). Sometimes, this is also called in the literature the “normal
rank” of P (λ), but we avoid to use this name for brevity. Note that expressions such

as rank(P (λ0)) denote the rank of the constant matrix P (λ0) ∈ Fm×n, i.e., of the
polynomial evaluated at λ0 ∈ F. We will say that P (λ0) has full row (resp. column)
rank if rankP (λ0) = m (resp. rankP (λ0) = n). Observe that if the constant matrix
P (λ0) has full row (resp. column) rank, then also the matrix polynomial P (λ) has
full row (resp. column) rank.

A key distinction for matrix polynomials is between regular and singular matrix
polynomials. A matrix polynomial P (λ) is said to be regular if P (λ) is square (that is,
m = n) and detP (λ) is not the identically zero polynomial. Otherwise, P (λ) is said
to be singular (note that this includes all rectangular matrix polynomials m 6= n).
We refer the reader to [17, Section 2] for the precise definitions of the spectral and
the singular structures of a matrix polynomial, as well as for other related concepts
that are used in this paper. In addition, as in [21], the term complete eigenstructure
of P (λ) stands for the collection of all of the elementary divisors of P (λ), both finite
and infinite, and for the collection of all of its minimal indices, both left and right, i.e.,
for the union of the spectral and singular structures of P (λ). In the next paragraph,
we explain in detail the concepts of minimal bases and minimal indices, as they play
an essential role in this paper.

If a matrix polynomial P (λ) ∈ F[λ]m×n is singular, then it has non-trivial left
and/or right rational null spaces:

N`(P ) := {y(λ)T ∈ F(λ)1×m such that y(λ)TP (λ) = 0},
Nr(P ) := {x(λ) ∈ F(λ)n×1 such that P (λ)x(λ) = 0}.

(2.2)

These null spaces are particular examples of rational subspaces, i.e., subspaces over
the field F(λ) formed by p-tuples whose entries are rational functions [32]. It is not
difficult to show that any rational subspace V has bases consisting entirely of vector
polynomials. The order of a vector polynomial basis of V is defined as the sum of the
degrees of its vectors [32, Definition 2]. Amongst all of the possible polynomial bases
of V, those with least order are called minimal bases of V [32, Definition 3]. There
are infinitely many minimal bases of V, but the ordered list of degrees of the vector
polynomials in any minimal basis of V is always the same [32, Remark 4, p. 497].
This list of degrees is called the list of minimal indices of V. With these definitions
at hand, the left (resp. right) minimal indices and bases of a matrix polynomial P (λ)
are defined as those of the rational subspace N`(P ) (resp. Nr(P )).

The following definitions are useful when working with minimal bases in practice.
The ith row degree of a matrix polynomial Q(λ) is the degree of the ith row of Q(λ).

Definition 2.1. Let Q(λ) ∈ F[λ]m×n be a matrix polynomial with row degrees
d1, d2, . . . , dm. The highest row degree coefficient matrix of Q(λ), denoted by Qh, is
the m × n constant matrix whose jth row is the coefficient of λdj in the jth row of
Q(λ), for j = 1, 2, . . . ,m. The matrix polynomial Q(λ) is called row reduced if Qh
has full row rank.

Observe that Qh is equal to the leading coefficient Qd 6= 0 in the expansion
Q(λ) =

∑d
i=0Qiλ

i if and only if all the row degrees of Q(λ) are equal to d.

Theorem 2.2 is the most useful characterization of minimal bases in practice.
This classical result was proved in [32, Main Theorem-2, p. 495], where is stated in
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abstract terms. The statement we present can be found in [21, Theorem 2.14].
Theorem 2.2. The rows of a matrix polynomial Q(λ) ∈ F[λ]m×n are a minimal

basis of the rational subspace they span if and only if Q(λ0) ∈ Fm×n has full row rank
for all λ0 ∈ F and Q(λ) is row reduced.

Remark 2.3. Most of the minimal bases appearing in this work are arranged as
the rows of a matrix. Therefore, throughout the paper—and with a slight abuse of
notation—we say that an m× n matrix polynomial (with m < n) is a minimal basis
if its rows form a minimal basis of the rational subspace they span.

Definition 2.1 and Theorem 2.2 admit obvious extensions “for columns”, which
are used occasionally in this paper.

Corollary 2.4 is a consequence of Theorem 2.2 and the property rank(A ⊗ B) =
rank(A) rank(B) [45, Theorem 4.2.15]. The simple proof is omitted.

Corollary 2.4. If a matrix polynomial Q(λ) is a minimal basis and Ip is the
p× p identity matrix, then Q(λ)⊗ Ip is also a minimal basis.

The concept of dual minimal bases is fundamental in this paper and is introduced
in Definition 2.5.

Definition 2.5. Two matrix polynomials L(λ) ∈ F[λ]m1×n and N(λ) ∈ F[λ]m2×n

are called dual minimal bases if L(λ) and N(λ) are both minimal bases and they satisfy
m1 +m2 = n and L(λ)N(λ)T = 0.

The name “dual minimal bases” and its definition were introduced in [18, Defi-
nition 2.10], but their origins can be traced back to [32]. We also use the expression
“N(λ) is a minimal basis dual to L(λ)”, or vice versa, for referring to matrix polyno-
mials L(λ) and N(λ) as those in Definition 2.5.

Example 2.6. We illustrate the concept of dual minimal bases with a simple
example that is important in this paper. Consider the following matrix polynomials:

Lk(λ) :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ F[λ]k×(k+1), (2.3)

and

Λk(λ)T :=
[
λk · · · λ 1

]
∈ F[λ]1×(k+1), (2.4)

where here and throughout the paper we occasionally omit some, or all, of the zero
entries of a matrix. Theorem 2.2 guarantees that Lk(λ) and Λk(λ)T are minimal
bases. In addition, Lk(λ)Λk(λ) = 0 holds. Therefore, Lk(λ) and Λk(λ)T are dual
minimal bases. From Corollary 2.4 and the properties of the Kronecker product we
get that Lk(λ)⊗ Ip and Λk(λ)T ⊗ Ip are also dual minimal bases.

The matrix Lk(λ) is very well known since is a right singular block of the Kro-
necker Canonical Form of pencils [33, Chapter XII]. Also the column vector polynomial
Λk(λ) is very well known and plays an essential role, for instance, in the famous vector
spaces of linearizations studied in [43, 55].

Theorem 2.7 establishes properties of minimal bases whose row degrees are all
equal. These are the minimal bases of interest in this work. The proof of Theorem
2.7 is omitted since it follows from results on row-wise reversals of minimal bases
[13, 56]. For a simpler proof based on Theorem 2.2, see the extended version of this
paper [25].

Theorem 2.7.
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(a) Let K(λ) be a minimal basis whose row degrees are all equal to j. Then
revjK(λ) is also a minimal basis whose row degrees are all equal to j.

(b) Let K(λ) and N(λ) be dual minimal bases. If the row degrees of K(λ) are all
equal to j and the row degrees of N(λ) are all equal to `, then revjK(λ) and
rev`N(λ) are also dual minimal bases.

Example 2.8. Theorem 2.7(b) can be applied to the dual minimal bases Lk(λ)
and Λk(λ)T in Example 2.6 to prove that

rev1Lk(λ) =


−λ 1

−λ 1
. . .

. . .

−λ 1

 ∈ F[λ]k×(k+1)

and

revkΛk(λ)T =
[
1 λ · · · λk

]
∈ F[λ]1×(k+1)

are also dual minimal bases. This fact follows also directly from Theorem 2.2 and
matrix multiplication.

Lemma 2.9 states that any matrix polynomial Q(λ) such that Q(λ0) has full row
rank for all λ0 ∈ F can be completed into a unimodular matrix polynomial, i.e., a
matrix polynomial with nonzero constant determinant. This is an old result that can
be traced back at least to [47] (a very simple proof appears in [21, Lemma 2.16(b)]).
Efficient algorithms for computing such completions can be found in [4].

Lemma 2.9. Let Q(λ) be a matrix polynomial over a field F. If Q(λ0) has full

row rank for all λ0 ∈ F, then there exists a matrix polynomial Q̃(λ) such that

Q̂(λ) =

[
Q(λ)

Q̃(λ)

]
is unimodular.

Lemma 2.9 can be applied, in particular, when Q(λ) is a minimal basis, as a
consequence of Theorem 2.2. Moreover, Lemma 2.9 can be extended to Theorem
2.10, which is one of the main tools employed in Section 3. Observe that Theorem
2.10 can be applied, in particular, when L(λ) and N(λ) are dual minimal bases.

Theorem 2.10. Let L(λ) ∈ F[λ]m1×n and N(λ) ∈ F[λ]m2×n be matrix poly-
nomials such that m1 + m2 = n, L(λ0) and N(λ0) have both full row rank for all
λ0 ∈ F, and L(λ)N(λ)T = 0. Then, there exists a unimodular matrix polynomial
U(λ) ∈ F[λ]n×n such that

U(λ) =

[
L(λ)

L̂(λ)

]
and U(λ)−1 =

[
N̂(λ)T N(λ)T

]
.

Proof. By Lemma 2.9, there exist unimodular embeddings[
L(λ)
Z1(λ)

]
and

[
Z2(λ)T N(λ)T

]
.

Since the product of two unimodular matrix polynomials is also unimodular, from[
L(λ)
Z1(λ)

] [
Z2(λ)T N(λ)T

]
=

[
L(λ)Z2(λ)T 0
Z1(λ)Z2(λ)T Z1(λ)N(λ)T

]
,
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it follows that L(λ)Z2(λ)T ∈ F[λ]m1×m1 and Z1(λ)N(λ)T ∈ F[λ]m2×m2 must also be
unimodular matrix polynomials, as well as their inverses. Let us now consider the
following unimodular matrix polynomials

U(λ) =

[
Im1

0
0 (Z1(λ)N(λ)T )−1

] [
L(λ)
Z1(λ)

]
and

V (λ) =
[
Z2(λ)T N(λ)T

] [(L(λ)Z2(λ)T )−1 0
0 Im2

] [
Im1

0
−X(λ) Im2

]
,

where X(λ) = (Z1(λ)N(λ)T )−1Z1(λ)Z2(λ)T (L(λ)Z2(λ)T )−1. The statement of the
theorem then follows by verifying that U(λ)V (λ) = In.

Example 2.11. We illustrate Theorem 2.10 with a particular embedding of the
dual minimal bases Lk(λ) and Λk(λ)T introduced in Example 2.6. If ek+1 is the last
column of Ik+1, then it is easily verified that

Vk(λ) =

[
Lk(λ)

eTk+1

]
=


−1 λ

−1 λ
. . .

. . .

−1 λ
0 · · · · · · 0 1

 ∈ F[λ](k+1)×(k+1)

is unimodular and that its inverse is

Vk(λ)−1 =



−1 −λ −λ2 · · · −λk−1 λk

−1 −λ
. . .

... λk−1

−1
. . . −λ2

...
. . . −λ λ2

−1 λ
1


∈ F[λ](k+1)×(k+1). (2.5)

Note that the last column of Vk(λ)−1 is Λk(λ). Therefore, Vk(λ) is a particular
instance of a matrix U(λ) in Theorem 2.10 for Lk(λ) and Λk(λ)T . Moreover, Vk(λ)⊗Ip
is a particular instance of U(λ) for the dual minimal bases Lk(λ)⊗Ip and Λk(λ)T ⊗Ip
discussed also in Example 2.6.

We now recall the definitions of linearization and strong linearization of a matrix
polynomial, which are central in this paper. These definitions were introduced in
[35, 36] for regular matrix polynomials, and extended to the singular case in [12]. We
refer the reader to [17] for a thorough treatment of these concepts and their properties.

Definition 2.12. A matrix pencil L(λ) is a linearization of a matrix polynomial
P (λ) of grade d if for some s ≥ 0 there exist two unimodular matrix polynomials U(λ)
and V (λ) such that

U(λ)L(λ)V (λ) =

[
Is

P (λ)

]
. (2.6)

Furthermore, a linearization L(λ) is called a strong linearization of P (λ) if rev1L(λ)
is a linearization of revdP (λ).
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The key property of any strong linearization L(λ) of a matrix polynomial P (λ)
is that L(λ) and P (λ) share the same finite and infinite elementary divisors [17,
Theorem 4.1]. However, Definition 2.12 only guarantees that the number of left (resp.
right) minimal indices of L(λ) is equal to the number of left (resp. right) minimal
indices of P (λ). In fact, except by these constraints on the numbers, L(λ) may
have any set of right and left minimal indices [17, Theorem 4.11]. Therefore, in the
case of singular matrix polynomials, one needs to consider strong linearizations with
the additional property that their minimal indices allow us to recover the minimal
indices of the polynomial via some simple rule. In addition, such rule should be robust
under perturbations, in order to be reliable in numerical computations affected by
rounding errors, since minimal indices of matrix polynomials may vary wildly under
perturbations [28, 29, 46]. These questions about recovery rules of minimal indices
are carefully studied throughout this paper.

Lemma 2.13 is a very simple result that allows us to easily recognize linearizations
in certain situations which are of interest in this work.

Lemma 2.13. Let P (λ) be an m × n matrix polynomial and L(λ) be a matrix

pencil. If there exist two unimodular matrix polynomials Ũ(λ) and Ṽ (λ) such that

Ũ(λ)L(λ)Ṽ (λ) =

Z(λ) X(λ) It
Y (λ) P (λ) 0
Is 0 0

 , (2.7)

for some s ≥ 0 and t ≥ 0 and for some matrix polynomials X(λ), Y (λ), and Z(λ),
then L(λ) is a linearization of P (λ).

Proof. Define the unimodular matrix polynomials

R(λ) =

It 0 −Z(λ)
0 0 Is
0 Im −Y (λ)

 , S(λ) =

0 Is 0
0 0 In
It 0 −X(λ)

 .
Then equation (2.7) implies that R(λ)Ũ(λ)L(λ)Ṽ (λ)S(λ) = diag(It, Is, P (λ)). This
proves that L(λ) is a linearization of P (λ).

2.1. Norms of matrix polynomials and their submultiplicative proper-
ties. The study of perturbations and backward errors in Section 5 requires the use
of norms of matrix polynomials. We have chosen the simple norm in Definition 2.14.
In this section the polynomials are assumed to have real or complex coefficients, i.e.,
F = R or F = C. We refer the reader to [68] for the definitions and properties of the
Frobenius norm, ‖ · ‖F , and the spectral norm, ‖ · ‖2, of constant matrices.

Definition 2.14. Let P (λ) =
∑d
i=0 Piλ

i ∈ F[λ]m×n. Then the Frobenius norm
of P (λ) is

‖P (λ)‖F :=

√√√√ d∑
i=0

‖Pi‖2F .

Obviously ‖P (λ)‖F defines a norm on the vector space of matrix polynomials
with arbitrary grade and fixed size m× n. In fact, Definition 2.14 defines a family of
norms, because we have a different vector space, and, so, a different norm for each
particular selection of size m × n. This is important when considering the norm of
the product P (λ)Q(λ) of two polynomials P (λ) and Q(λ), since the sizes of the two
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factors and the product are, in general, different. In this context, it is also important
to realize that the value of ‖P (λ)‖F is independent of the grade chosen for P (λ). This
property allows us to work with ‖P (λ)‖F without specifying the grade of P (λ).

It is easy to construct examples that show that the norm ‖P (λ)‖F is not submul-
tiplicative, i.e., ‖P (λ)Q(λ)‖F � ‖P (λ)‖F ‖Q(λ)‖F in general [25]. Therefore, since
in Section 5 we need to bound the norms of certain products of matrix polynomials,
we present Lemma 2.15, whose elementary but somewhat long proof is omitted. The
interested reader can find the proof in the extended version of this paper [25].

Lemma 2.15. Let P (λ) =
∑d
i=0 Piλ

i, let Q(λ) =
∑t
i=0Qiλ

i, and let Λk(λ)T be
the vector polynomial defined in (2.4). Then the following inequalities hold:

(a) ‖P (λ)Q(λ)‖F ≤
√
d+ 1 ·

√√√√ d∑
i=0

‖Pi‖22 · ‖Q(λ)‖F ,

(b) ‖P (λ)Q(λ)‖F ≤
√
t+ 1 · ‖P (λ)‖F ·

√√√√ t∑
i=0

‖Qi‖22 ,

(c) ‖P (λ)Q(λ)‖F ≤ min{
√
d+ 1,

√
t+ 1} ‖P (λ)‖F ‖Q(λ)‖F ,

(d) ‖P (λ) (Λk(λ)⊗ Ip)‖F ≤ min{
√
d+ 1,

√
k + 1} ‖P (λ)‖F ,

(e) ‖(Λk(λ)T ⊗ Ip)Q(λ)‖F ≤ min{
√
t+ 1,

√
k + 1} ‖Q(λ)‖F ,

where we assume that all the products are defined.

Finally, in Section 5 we need to consider pairs of matrices (C,D) where C and D
may have different sizes. Therefore, (C,D) cannot be considered as a matrix pencil.
For these pairs, we introduce the corresponding Frobenius norm as:

‖(C,D)‖F :=
√
‖C‖2F + ‖D‖2F . (2.8)

3. Block minimal bases linearizations. The linearizations considered in this
work in Sections 4 and 5 are particular cases of the new pencils introduced in the
following definition:

Definition 3.1. A matrix pencil

L(λ) =

[
M(λ) K2(λ)T

K1(λ) 0

]
(3.1)

is called a block minimal bases pencil if K1(λ) and K2(λ) are both minimal bases.
If, in addition, the row degrees of K1(λ) are all equal to 1, the row degrees of K2(λ)
are all equal to 1, the row degrees of a minimal basis dual to K1(λ) are all equal, and
the row degrees of a minimal basis dual to K2(λ) are all equal, then L(λ) is called a
strong block minimal bases pencil.

The pencils in Definition 3.1 include all the families of Fiedler-like linearizations
of matrix polynomials, which have received considerable attention recently. For more
information on this, see the extended version of this paper [25, Section 4] and [10].
Therefore, Definition 3.1 seems to be a key concept that unifies and simplifies the
theory of many of the linearizations existing in the literature. In this paper, the
linearizations in Definition 3.1 are of interest because they are generic and robust
under perturbations that preserve the zero block, as we discuss at the end of this
section.

Remark 3.2. Observe in Definition 3.1 that the row degrees of any minimal
basis dual to K1(λ) are always the same, up to permutations, since they are the
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right minimal indices of K1(λ). The same holds for K2(λ). Therefore, there are no
ambiguities in the definition of strong block minimal bases pencils with respect to the
selection of the minimal bases dual to K1(λ) and K2(λ).

Our next theorem reveals that (strong) block minimal bases pencils are (strong)
linearizations of certain matrix polynomials.

Theorem 3.3. Let K1(λ) and N1(λ) be a pair of dual minimal bases, and let
K2(λ) and N2(λ) be another pair of dual minimal bases. Consider the matrix polyno-
mial

Q(λ) := N2(λ)M(λ)N1(λ)T , (3.2)

and the block minimal bases pencil L(λ) in (3.1). Then:
(a) L(λ) is a linearization of Q(λ).
(b) If L(λ) is a strong block minimal bases pencil, then L(λ) is a strong lin-

earization of Q(λ), considered as a polynomial with grade 1 + deg(N1(λ)) +
deg(N2(λ)).

Proof. (a) According to Theorem 2.10, for i = 1, 2, there exist unimodular matrix
polynomials such that

Ui(λ) =

[
Ki(λ)

K̂i(λ)

]
and Ui(λ)−1 =

[
N̂i(λ)T Ni(λ)T

]
. (3.3)

Note that if mi is the number of rows of Ki(λ), for i = 1, 2, then (3.3) implies

Ki(λ)N̂i(λ)T = Imi
andKi(λ)Ni(λ)T = 0. Keep in mind that these equalities are used

in subsequent matrix products. Next, consider the unimodular matrices U2(λ)−T⊕Im1

and U1(λ)−1 ⊕ Im2 , and form the following matrix product:

(U2(λ)−T ⊕ Im1
)L(λ) (U1(λ)−1 ⊕ Im2

)

=

N̂2(λ) 0
N2(λ) 0

0 Im1

 [M(λ) K2(λ)T

K1(λ) 0

] [
N̂1(λ)T N1(λ)T 0

0 0 Im2

]

=

Z(λ) X(λ) Im2

Y (λ) Q(λ) 0
Im1 0 0

 , (3.4)

where the expressions of the matrix polynomials X(λ), Y (λ), and Z(λ) are not of
specific interest in this proof. Equation (3.4) and Lemma 2.13 prove that L(λ) is a
linearization of Q(λ).

(b) Let us denote for brevity `1 = deg(N1(λ)) and `2 = deg(N2(λ)). Since L(λ) is
a strong block minimal bases pencil, Theorem 2.7(b) guarantees that rev1K1(λ) and
rev`1N1(λ) are dual minimal bases, as well as rev1K2(λ) and rev`2N2(λ). Therefore,

rev1L(λ) =

[
rev1M(λ) rev1K2(λ)T

rev1K1(λ) 0

]
is also a block minimal bases pencil and Theorem 3.3(a) implies that rev1L(λ) is a
linearization of

(rev`2N2(λ)) (rev1M(λ)) (rev`1N1(λ))T = λ`2N2

(
λ−1

)
λM

(
λ−1

)
λ`1N1

(
λ−1

)T
λ1+`1+`2Q(λ−1) = rev1+`1+`2Q(λ),
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proving part (b).
Remark 3.4. Given a strong block minimal bases pencil L(λ), there are infinitely

many minimal bases N1(λ) and N2(λ) dual to K1(λ) and K2(λ), respectively. There-
fore, the matrix polynomial Q(λ) is not defined uniquely by L(λ). This is connected
to the following remark: the standard scenario when using linearizations is that the
matrix polynomial Q(λ) is given and one wants to construct a linearization of Q(λ) as
easily as possible, but Theorem 3.3 seems to operate in the opposite way. However, if
Q(λ) is given and N1(λ) and N2(λ) are fixed, then (3.2) can be viewed as a linear equa-
tion for the unknown pencil M(λ). It is possible to prove that this equation is always
consistent, as a consequence of the properties of the minimal bases N1(λ) and N2(λ).
Despite its consistency, the equation (3.2) may be very difficult to solve for arbitrary
minimal bases N1(λ) and N2(λ). We will see in Section 4 that for certain particular
choices of N1(λ) and N2(λ) it is very easy to characterize all possible solutions M(λ)
and to define, in this way, a new wide class of linearizations easily constructible from
Q(λ). This new class includes, among many others, all Fiedler linearizations, up to
permutations, of square or rectangular polynomials [3, 14, 16, 31].

Remark 3.5. We include in Definition 3.1 the cases in which either K1(λ) or
K2(λ) is an empty matrix. This means that L(λ) is either a 1 × 2 or a 2 × 1 block
matrix, and, so, the zero block is not present. All of the proofs in this paper remain
valid in these limiting cases with the following convention: if K1(λ) (resp. K2(λ))
is an empty matrix, then N1(λ) = Is (resp. N2(λ) = Is), where s is the number of
colums (resp. rows) of M(λ).

Next, we investigate, for strong block minimal bases pencils, the relationship of
the minimal indices of Q(λ) in (3.2) with those of its strong linearization L(λ) in
(3.1). This result is a corollary of a technical lemma presented in Appendix A.

Theorem 3.6. Let L(λ) be a strong block minimal bases pencil as in (3.1), let
N1(λ) be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to K2(λ),
and let Q(λ) be the matrix polynomial defined in (3.2). Then the following hold:

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of Q(λ), then

ε1 + deg(N1(λ)) ≤ ε2 + deg(N1(λ)) ≤ · · · ≤ εp + deg(N1(λ))

are the right minimal indices of L(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of Q(λ), then

η1 + deg(N2(λ)) ≤ η2 + deg(N2(λ)) ≤ · · · ≤ ηq + deg(N2(λ))

are the left minimal indices of L(λ).
Proof. Part (a) follows immediately from Lemma A.1(b) and equation (A.2).

Part (b) follows simply from applying part (a) to L(λ)T and Q(λ)T after taking into
account that: (i) L(λ)T is also a strong block minimal bases pencil with the roles of
(K1(λ), N1(λ)) and (K2(λ), N2(λ)) interchanged, (ii) so L(λ)T is a strong linearization
of Q(λ)T , and (iii) for any matrix polynomial its left minimal indices are the right
minimal indices of its transpose.

In order to concisely refer to results like those in Theorem 3.6 we use in this
paper expressions as “the right minimal indices of L(λ) are those of Q(λ) shifted by
deg(N1(λ))”, whose rigorous meaning is precisely the statement of Theorem 3.6(a).

Finally, we emphasize that “generically” any pencil partitioned into 2 × 2 blocks
with a (2, 2)-zero block as in (3.1) is a strong block minimal bases pencil if the sizes
of the blocks are adequate. This follows from the recent results in [75, Section 5]
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when the pencils K1(λ) and K2(λ) have both more columns than rows and the excess
number of columns is a divisor of the number of rows, i.e. Ki(λ) have dimension
mi× (mi+ni) and ni divides mi for i = 1, 2. This makes the pencils in Definition 3.1
a very large family of strong linearizations very convenient for analyzing perturbations
of the highly structured strong linearizations used in computational practice, as for
instance the Frobenious companion forms [36], because although the perturbations
destroy the particular structures, as long as they are sufficiently small and the (2, 2)-
zero block is preserved, the perturbed linearization is still a strong linearization (in
fact, a strong block minimal bases pencil) of a nearby polynomial obtained by (3.2)
applied to the perturbed pencil. Note that the (2, 2)-zero block is not present in the
limiting cases discussed in Remark 3.5. These ideas are fundamental for the error
analysis in Section 5.

4. Block Kronecker linearizations. In this section we study those strong
block minimal bases pencils with off-diagonal blocks equal to the pencils in Example
2.6. They are called block Kronecker pencils. Thus, these pencils have the structure in
(3.1) with K1(λ) = Lε(λ)⊗ In and K2(λ) = Lη(λ)⊗ Im. Since, according to Example
2.6, N1(λ) = Λε(λ)T ⊗ In and N2(λ) = Λη(λ)T ⊗ Im are minimal bases dual to these
K1(λ) and K2(λ), respectively, most properties of block Kronecker pencils follow
immediately from the general and simple theory in Section 3, for these particular
Ki(λ) and Ni(λ), i = 1, 2. Nonetheless, we emphasize that block Kronecker pencils
have an essential advantage over general strong block minimal bases pencils that is
key in applications: given a matrix polynomial P (λ) it is very easy to characterize
an infinite set of (1, 1)-blocks M(λ) that make L(λ) in (3.1) a strong linearization of
P (λ). Moreover, as we discuss below, block Kronecker pencils include, as particular
cases, the classical Frobenius companion forms and the Fiedler pencils [14, 16] modulo
permutations. Block Kronecker pencils are formally introduced in Definition 4.1.

Definition 4.1. Let Lk(λ) be the matrix pencil defined in (2.3) and let λM1+M0

be an arbitrary pencil. Then any matrix pencil of the form

L(λ) =

[
λM1 +M0 Lη(λ)T ⊗ Im
Lε(λ)⊗ In 0

] }
(η+1)m

} εn︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm

, (4.1)

is called an (ε, n, η,m)-block Kronecker pencil or, simply, a block Kronecker pen-
cil. The block partitioning of L(λ) in (4.1) is called the natural partition of a block
Kronecker pencil.

The name “block Kronecker pencil” is motivated by the fact that the anti-diagonal
blocks of L(λ) in (4.1) are Kronecker products of singular blocks of the Kronecker
canonical form of pencils [33, Chapter XII] with identity matrices.

Since block Kronecker pencils are particular cases of strong block minimal bases
pencils, we obtain the following result for block Kronecker pencils as an immediate
corollary of Theorems 3.3 and 3.6 and the results in Example 2.6.

Theorem 4.2. Let L(λ) be an (ε, n, η,m)-block Kronecker pencil as in (4.1).
Then L(λ) is a strong linearization of the matrix polynomial

Q(λ) := (Λη(λ)T ⊗ Im)(λM1 +M0)(Λε(λ)⊗ In) ∈ F[λ]m×n (4.2)

of grade ε + η + 1, the right minimal indices of L(λ) are those of Q(λ) shifted by ε,
and the left minimal indices of L(λ) are those of Q(λ) shifted by η.

Remark 4.3. Explicit unimodular matrices that transform any block Kronecker
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pencil as in (4.1) into a block anti-triangular form (3.4) can be described via the
matrices Vk(λ)−1 in Example 2.11. In fact, an immediate corollary of Example 2.11
and the block matrix multiplications yielding (3.4) in the proof of Theorem 3.3 is that

((Vη(λ)−T ⊗ Im)⊕ Iεn)L(λ) ((Vε(λ)−1 ⊗ In)⊕ Iηm) (4.3)

has the block anti-triangular structure in (3.4). This can also be checked via a di-
rect multiplication, which proves in a simple way that block Kronecker pencils are
linearizations of Q(λ) as a consequence of Lemma 2.13. A similar approach can be
used to prove that L(λ) is a strong linearization of Q(λ).

The most transparent examples of block Kronecker pencils are the classical first
and second Frobenius companion forms of a matrix polynomial P (λ) =

∑d
i=0 Piλ

i ∈
F[λ]m×n [17, Section 5.1]. The first Frobenius companion form is just L(λ) in (4.1)
with M(λ) = [λPd + Pd−1, Pd−2, . . . , P0], ε = d − 1, and η = 0, while the second
Frobenius companion form corresponds to M(λ) = [λPTd + PTd−1, P

T
d−2, . . . , P

T
0 ]T ,

ε = 0, and η = d − 1. Note that the application of Theorem 4.2 in these two cases
proves in a very simple way that the first and the second Frobenius companion forms
are strong linearizations of P (λ) with the well-known shifting relationships between
the minimal indices (compare with the proofs in [17, Section 5.1]).

It is also possible to prove with more effort that after performing some row and
column permutations all Fiedler pencils of P (λ) =

∑d
i=0 Piλ

i ∈ F[λ]m×n [14, 16] be-
come block Kronecker pencils with the pencil λM1+M0 having a very simple structure
that can be explicitly described in terms of the coefficients of P (λ). This result can
be found in the extended version of this paper [25, Section 4], where it is proved
that the only nonzero block entries of λM1 + M0 are λPd + Pd−1, Pd−2, . . . , P1, P0

distributed along what is called a “staircase pattern” [19, Section 5] and [27]. Once
this is established, Theorem 4.2 proves again in a very simple way that all Fiedler
pencils are strong linearizations of P (λ) with the well-known shifting relationships
between the minimal indices (compare with the cumbersome proofs in [14] and the
very complicated ones in [16]).

Next, we show what conditions on λM1 + M0 are needed for a block Kronecker
pencil (4.1) to be a strong linearization of a prescribed matrix polynomial P (λ).

Theorem 4.4. Let P (λ) =
∑d
k=0 Pkλ

k ∈ F[λ]m×n, let L(λ) be an (ε, n, η,m)-
block Kronecker pencil as in (4.1) with ε + η + 1 = d, let us consider M0 and M1

partitioned into (η + 1) × (ε + 1) blocks each of size m × n, and let us denote these
blocks by [M0]ij , [M1]ij ∈ Fm×n for i = 1, . . . , η + 1 and j = 1, . . . , ε+ 1. If∑

i+j=d+2−k

[M1]ij +
∑

i+j=d+1−k

[M0]ij = Pk, for k = 0, 1, . . . , d, (4.4)

then L(λ) is a strong linearization of P (λ), the right minimal indices of L(λ) are
those of P (λ) shifted by ε, and the left minimal indices of L(λ) are those of P (λ)
shifted by η.

Proof. A direct multiplication, the condition ε+ η + 1 = d, and some elementary
manipulations of summations allow us to express Q(λ) in (4.2) as

Q(λ) =

d∑
k=0

λk

 ∑
i+j=d+2−k

[M1]ij +
∑

i+j=d+1−k

[M0]ij

 .
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Then (4.4) implies that Q(λ) = P (λ) and the result follows from Theorem 4.2.
Note that equation (4.4) tells us that the sum of the blocks on the (d−k)th block

antidiagonal of M0 plus the sum of the blocks on the (d− k+ 1)th block antidiagonal
of M1 must be equal to the coefficient Pk of P (λ). This implies that the upper-left
block of M1 must be equal to Pd, and that the lower-right block of M0 must be equal
to P0, that is, the pencil λM1 +M0 has the form

λM1 +M0 =


λPd + [M0]11 . .

.
. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
λ[M1]η+1,ε+1 + P0

 . (4.5)

There are infinitely many ways to select the remaining block entries of M1 and M0 to
synthesize P (λ) in the pencil λM1 +M0.

In Example 4.5 we show three different block Kronecker pencils that are all strong
linearizations of a grade 5 matrix polynomial P (λ). These three pencils have param-
eters ε = η = 2. Moreover, the corresponding pencils λM1 + M0 in these block
Kronecker pencils do not follow a staircase pattern for λP5 + P4, P3, . . . , P0, that is,
they are not permuted Fiedler pencils [25, Theorem 4.5].

Example 4.5. Let P (λ) =
∑5
k=0 Pkλ

k ∈ F[λ]m×n and let A,B ∈ Fm×n be
arbitrary constant matrices. The following block Kronecker pencils

λP5 + P4 0 0 −Im 0
0 λP3 + P2 0 λIm −Im
0 0 λP1 + P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0

 ,

λP5 λP4 λP3 −Im 0

0 0 λP2 λIm −Im
0 0 λP1 + P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0

 , and


λP5 A P2 −Im 0
λP4 −λA λB + P1 λIm −Im
λP3 −λB P0 0 λIm
−In λIn 0 0 0

0 −In λIn 0 0


are all strong linearizations of P (λ).

Remark 4.6. As discussed above, equation (4.4) allows us to construct infinitely
many block Kronecker pencils that are strong linearizations of a prescribed matrix
polynomial P (λ). Therefore, a natural question is which ones can be reliably used for
computing all the eigenvalues of P (λ), when P (λ) is regular, or all the eigenvalues and
minimal indices of P (λ), when P (λ) is singular, via either the QZ algorithm [38] or
the staircase algorithm [23, 24, 71]. From the point of view of backward errors, this is
clearly stated in Corollary 5.24 and carefully analyzed in the paragraphs before that
corollary, but we advance here the main conclusions for impatient readers. First, the
use of block Kronecker pencils (4.1) is reliable only if ‖λM1 +M0‖F ≈ ‖P (λ)‖F . This
is intuitively natural, because, according to (4.2), if ‖λM1 +M0‖F � ‖P (λ)‖F , then
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small relative perturbations in λM1 +M0 might produce huge perturbations in P (λ),
and ‖λM1 +M0‖F � ‖P (λ)‖F cannot happen as a consequence of (4.2) and Lemma
2.15. In addition, ‖λM1 +M0‖F ≈ ‖P (λ)‖F ≈ 1 must also hold, which is also natural
since either ‖P (λ)‖F � 1 or ‖P (λ)‖F � 1 would lead to highly unbalanced block
Kronecker pencils (4.1), with the norms of the antidiagonal blocks either much larger
or much smaller than the norm of the (1, 1) block. In fact, it is proved in Corollary
5.24 that any block Kronecker pencil with ‖λM1 + M0‖F ≈ ‖P (λ)‖F ≈ 1 leads to
small relative backward errors from the polynomial point of view. This condition
still allows us to use infinitely many pencils that might have additional advantages as
preservation of structures.

5. Backward error analysis of complete polynomial eigenproblems sol-
ved via block Kronecker pencils. The problem of computing in floating point
arithmetic the complete eigenstructure of a matrix polynomial P (λ) is called in this
paper the complete polynomial eigenproblem. The complete eigenstructure consists of
all of the eigenvalues, finite and infinite, and all of the minimal indices, left and right, of
P (λ). This eigenstructure can be efficiently computed via the staircase algorithm for
matrix pencils applied to any strong linearization L(λ) of the polynomial that allows
us to recover the minimal indices of the polynomial from those of the linearizations via
constant shifts (like those of Theorem 4.4 for block Kronecker pencils). The staircase
algorithm for pencils was introduced for the first time in [71] and was further developed
in [23, 24], where reliable software for computing such a staircase form was presented.
Though problems involving singular polynomials arise very often in control theory,
the matrix polynomials arising in many other applications are normally square and
regular. In this case the complete eigenstructure does not include minimal indices
and the algorithm of choice is the simpler QZ algorithm [38].

The staircase and the QZ algorithms have been shown to be backward stable, but it
ought to be stressed that the backward stability of these two algorithms does not imply
that the computed eigenstructure is the exact one of the given linearization: in general
this problem is ill-posed, which implies that even an arbitrarily small perturbation
may yield a different eigenstructure. Since this is not the subject of this paper, we refer
to [28, 29] for a more elaborate discussion on these aspects. Nonetheless, the standard
backward error results guarantee that if the staircase algorithm or the QZ algorithm
are applied to a strong linearization L(λ) in a computer with unit roundoff u, then
the computed complete eigenstructure of L(λ) is the exact complete eigenstructure of
a nearby matrix pencil L(λ) + ∆L(λ) such that

‖∆L(λ)‖F
‖L(λ)‖F

= O(u), (5.1)

where ‖·‖F denotes the Frobenius norm introduced in Definition 2.14. However, (5.1)
is not the desired ideal result for the original problem of computing the complete
eigenstructure of the matrix polynomial P (λ) of given grade d. The desired backward
error result would be that the computed complete eigenstructure of P (λ) is the exact
complete eigenstructure of a nearby matrix polynomial P (λ) + ∆P (λ) also of grade d
and such that

‖∆P (λ)‖F
‖P (λ)‖F

= O(u). (5.2)

In order to establish (5.2), if possible, starting from (5.1), two results must be
proved: (i) that the perturbed pencil L(λ) + ∆L(λ) is a strong linearization for some
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matrix polynomial P (λ) + ∆P (λ) of grade d with the shifting relations between the
minimal indices of L(λ) + ∆L(λ) and P (λ) + ∆P (λ) equal to the shifting relations
between the minimal indices of L(λ) and P (λ); and (ii) to prove a perturbation bound
of the type

‖∆P (λ)‖F
‖P (λ)‖F

≤ CP,L
‖∆L(λ)‖F
‖L(λ)‖F

, (5.3)

with CP,L a moderate number depending, in principle, on P (λ) and L(λ). We em-
phasize that to prove (i) is much easier for regular than for singular polynomials,
because in the former case there are no minimal indices involved in the computations.
Observe also that the minimal indices of P (λ)+∆P (λ) are computed via the recovery
rules valid for the unperturbed linearization L(λ) applied to the computed minimal
indices of L(λ), that is, to the exact minimal indices of L(λ) + ∆L(λ). Therefore, if
the recovery rules for the minimal indices of L(λ) + ∆L(λ) were different than those
of L(λ), such a method for computing the minimal indices of P (λ) would not make
any sense because the minimal indices are integer numbers. We repeat that thereby,
we do not claim that the exact eigenstructure of L(λ) was computed, or, even more,
that the computed eigenstructure is close to that of L(λ), but rather that the exact
eigenstructure of a nearby pencil L(λ) + ∆L(λ) was computed, which may be quite
different than the one of L(λ) for ill-conditioned problems [28, 29].

The goal of this section is to study these questions for any block Kronecker pencil
L(λ) as in (4.1) of a given polynomial P (λ) of grade d and size m×n. In plain words,
we will prove that if the block Kronecker pencil satisfies ‖λM1 + M0‖F ≈ ‖P (λ)‖F
and P (λ) is scaled to satisfy ‖P (λ)‖F = 1, then (5.3) holds with CP,L ≈ d3

√
m+ n.

Therefore, under these two conditions, we get perfect structured backward stability
from the polynomial point of view when the block Kronecker pencils are combined with
the staircase or QZ algorithms for computing the complete eigenstructure of P (λ).
We emphasize that this is no longer true if ‖λM1 +M0‖F � ‖P (λ)‖F , because in this
case we will prove that CP,L in (5.3) is huge. Note that ‖λM1 + M0‖F � ‖P (λ)‖F
may happen, for instance, if in the last block Kronecker pencil of Example 4.5 the
arbitrary matrices A or B have very large norms. Observe that the permuted Fiedler
pencils in [25, Theorem 4.5] satisfy ‖λM1 + M0‖F = ‖P (λ)‖F and, so, our analysis
guarantees perfect structured polynomial backward stability for all Fiedler pencils.

Backward error analyses valid simultaneously for the complete eigenstructure, i.e.,
global analyses, of complete polynomial eigenproblems (and complete scalar rootfind-
ing problems) solved by linearizations are not new in the literature. They appeared
for the first time in the seminal paper [74], were studied in the influential work [30],
and have received considerable attention in recent years [20, 50, 51, 53, 61, 64]. How-
ever, we stress that the analysis developed in this paper has a number of key features
which are not present in any of the other analyses published so far: first, it is not
a first order analysis since it holds for perturbations ∆L(λ) of finite norm; second,
it provides very detailed bounds, and not just vague big-O bounds as other analyses
do; third, it is valid simultaneously for a very large class of linearizations for which
backward error analyses are not yet known; and, fourth, it establishes a framework
that may be generalized to other classes of linearizations.

Before proceeding, we remark that our analysis is of a completely different nature
than the “local” residual backward error analyses presented in [42, 69], which are
only valid for regular matrix polynomials, are based on the residual of a particular
computed eigenvalue-vector pair, and find a nearby polynomial to the original one
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that has as exact eigenpair the particular computed one. A key difference with our
analysis is that in these local analyses the nearby polynomial is different for each
computed eigenpair, while in our case it is the same for the complete eigenstructure.

The main result in this section is Theorem 5.21, whose proof requires considerable
efforts. The proof is split into three main steps that are briefly described in the next
paragraphs in such a way that the reader may follow easily the main flow of the
proof. We emphasize that the complete eigenstructure of the initial perturbed pencil
L(λ) + ∆L(λ) does not change in the three steps except for the constant shifts of the
minimal indices in the third step. In this section we assume that F = R or F = C.

Initial data. A matrix polynomial P (λ) =
∑d
k=0 Pkλ

k ∈ F[λ]m×n and a block
Kronecker pencil L(λ) as in (4.1) such that

P (λ) = (Λη(λ)T ⊗ Im)(λM1 +M0)(Λε(λ)⊗ In), with ε+ η + 1 = d, (5.4)

are given. A perturbation pencil ∆L(λ) of L(λ) is also given and is partitioned
conformably to the natural partition of L(λ), that is,

L(λ) + ∆L(λ) =

[
λM1 +M0 + ∆L11(λ) Lη(λ)T ⊗ Im + ∆L12(λ)
Lε(λ)⊗ In + ∆L21(λ) ∆L22(λ)

]
. (5.5)

First step. We establish a bound on ‖∆L(λ)‖F that allows us to construct a strict
equivalence transformation that returns the (2, 2)-block of the perturbed pencil (5.5)
back to zero as in L(λ):[

I(η+1)m 0
C Iεn

]
(L(λ) + ∆L(λ))

[
I(ε+1)n D

0 Iηm

]
(5.6)

=

[
λM1 +M0 + ∆L11(λ) Lη(λ)T ⊗ Im + ∆L̃12(λ)

Lε(λ)⊗ In + ∆L̃21(λ) 0

]
=: L(λ) + ∆L̃(λ).

This construction is equivalent to solving a nonlinear system of matrix equations
whose unknowns are the constant matrices C and D. Moreover, we prove detailed
bounds on ‖(C,D)‖F , ‖∆L̃12(λ)‖F , and ‖∆L̃21(λ)‖F in terms of ‖∆L(λ)‖F . It is

important to remark that L(λ) + ∆L(λ) and the pencil L(λ) + ∆L̃(λ) in (5.6) have
the same complete eigenstructures (including minimal indices), since they are strictly
equivalent [17, Definition 3.1].

Remark 5.1. In the cases where either ε = 0 or η = 0 this first step is not
necessary since either the last block row or last block column of L(λ)+∆L(λ) are not
present and one may proceed directly with the second step. We remind the reader
that these cases are important since they include the Frobenius companion pencils.

Second step. The second step consists of establishing bounds on ‖∆L̃12(λ)‖F and

‖∆L̃21(λ)‖F that guarantee that L(λ)+∆L̃(λ) in (5.6) is a strong block minimal bases

pencil. This requires two substeps: (a) to prove that K1(λ) := Lε(λ)⊗ In + ∆L̃21(λ)

and K2(λ) := Lη(λ)⊗ Im + ∆L̃12(λ)T are both minimal bases with their row degrees
all equal to 1, and (b) to prove that there exist minimal bases

Λε(λ)T ⊗ In + ∆Rε(λ)T and Λη(λ)T ⊗ Im + ∆Rη(λ)T
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dual, respectively, to K1(λ) and K2(λ) with their row degrees all equal, respectively, to

ε and η. In addition, we prove detailed bounds on ‖∆Rε(λ)‖F in terms of ‖∆L̃21(λ)‖F ,

and on ‖∆Rη(λ)‖F in terms of ‖∆L̃12(λ)‖F .
Remark 5.2. It is only needed to prove the results in the substeps (a) and (b) for

K1(λ) = Lε(λ)⊗ In + ∆L̃21(λ) and Λε(λ)T ⊗ In + ∆Rε(λ)T , since, then, the ones for

K2(λ) = Lη(λ)⊗ Im + ∆L̃12(λ)T and Λη(λ)T ⊗ Im + ∆Rη(λ)T follow as corollaries.

Third step. Combining the first and second steps and Theorems 3.3 and 3.6, we get
that L(λ) + ∆L(λ) is a strong linearization of the matrix polynomial

P (λ) + ∆P (λ) (5.7)

:=
(
Λη(λ)T ⊗ Im + ∆Rη(λ)T

)
(λM1 +M0 + ∆L11(λ)) (Λε(λ)⊗ In + ∆Rε(λ)) ,

that the right minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ) shifted
by ε, and that the left minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by η, i.e., the shifting relations between the minimal indices are the same as
those between the minimal indices of L(λ) and P (λ). The rest of the proof consists
of bounding ‖∆P (λ)‖F /‖P (λ)‖F in terms of ‖∆L(λ)‖F /‖L(λ)‖F using the bounds
obtained in the first and second steps.

In the rest of this section, the three steps described above are developed in detail.
We use very often, without explicitly referring to, the properties of the Frobenius
norm of matrix polynomials in Lemma 2.15 and, also, that for any matrix polynomial
P (λ) and any submatrix B(λ) of P (λ), the inequality ‖B(λ)‖F ≤ ‖P (λ)‖F holds.

5.1. First step: solving a system of quadratic Sylvester-like matrix
equations for constructing the strict equivalence (5.6). For brevity, hereafter
we use the following notation for the anti-diagonal blocks of block Kronecker pencils,
which are constructed from the pencil (2.3): Lk(λ) ⊗ I` =: (λFk − Ek) ⊗ I` =:
λFk` − Ek`, where

Ek` =
[
Ik 0k×1

]
⊗ I` , and Fk` =

[
0k×1 Ik

]
⊗ I` . (5.8)

In addition, the natural blocks of the perturbation ∆L(λ) in (5.5) are denoted by

∆L(λ) =

[
∆L11(λ) ∆L12(λ)
∆L21(λ) ∆L22(λ)

]
=:

[
λ∆B11 + ∆A11 λ∆B12 + ∆A12

λ∆B21 + ∆A21 λ∆B22 + ∆A22

]
. (5.9)

According to Remark 5.1, we assume that ε 6= 0 and η 6= 0 throughout this subsection.
The main result of this subsection is Theorem 5.9 and the starting point is the

trivial Lemma 5.3, which follows from elementary matrix operations applied to the
lower-right block in (5.6).

Lemma 5.3. There exist constant matrices C ∈ Fεn×(η+1)m and D ∈ F(ε+1)n×ηm

satisfying (5.6) if and only if

[
C Iεn

]
(L(λ) + ∆L(λ))

[
D
Iηm

]
= 0 . (5.10)

Moreover, with the notation introduced in (5.8) and (5.9), the equation (5.10) is
equivalent to the following system of quadratic Sylvester-like matrix equations{

C(ETηm −∆A12) + (Eεn −∆A21)D = ∆A22 + C(M0 + ∆A11)D
C(FTηm + ∆B12) + (Fεn + ∆B21)D = −∆B22 − C(M1 + ∆B11)D

, (5.11)
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for the unknown matrices C and D.
The system of matrix equations (5.11) is equivalent to a system of 2εηnm quadra-

tic scalar equations in the 2εηnm+(ε+η)mn unknown entries of C and D. Therefore,
(5.11) is an underdetermined system of equations that may have infinitely many solu-
tions. Our aim is to establish conditions on ‖∆L(λ)‖F that guarantee the existence of
a solution (C,D) to (5.11) with ‖(C,D)‖F . ‖∆L(λ)‖F , where the norm ‖(C,D)‖F
was defined in (2.8). This is done in Theorem 5.8, whose proof follows that of Stewart
[67, Theorem 5.1] (see also [68, Theorem 2.11, p. 242] for a more general and more
accesible result) and is based on a fixed point iteration argument. However, we em-
phasize that the result by Stewart is valid only for certain nonlinear matrix equations
having a unique solution, while in our case there may be infinitely many solutions.

The solution of (5.11) relies upon first solving the system of linear Sylvester
equations obtained by removing the quadratic terms in C and D of (5.11). Such a
system is: {

C(ETηm −∆A12) + (Eεn −∆A21)D = ∆A22

C(FTηm + ∆B12) + (Fεn + ∆B21)D = −∆B22
, (5.12)

which is equivalent to the underdetermined standard linear system (T + ∆T )x = b
given by

[
Eηm ⊗ Iεn Iηm ⊗ Eεn
Fηm ⊗ Iεn Iηm ⊗ Fεn

]
︸ ︷︷ ︸

=:T

+

[
−∆AT12 ⊗ Iεn −Iηm ⊗∆A21

∆BT12 ⊗ Iεn Iηm ⊗∆B21

]
︸ ︷︷ ︸

=:∆T


[

vec(C)
vec(D)

]
︸ ︷︷ ︸

=:x

=

[
vec(∆A22)
−vec(∆B22)

]
︸ ︷︷ ︸

=:b

, (5.13)

where, for any m×n matrix M = [mij ], the column vector vec(M) is the vectorization
of M , namely, vec(M) := [m11 . . . mm1m12 . . . mm2 . . . m1n . . . mmn]T (see Horn
and Johnson [45, Def. 4.2.9], for instance). For brevity, and with an abuse of notation
we use expressions such as “(C,D) is a solution of (5.13)”.

Lemma 5.4 proves that the matrix T in (5.13) has full row rank and provides
an expression for its minimum singular value. This implies that if ‖∆T‖2 is small
enough, then T +∆T also has full row rank and the linear system (5.13) is consistent,
as is the equivalent system of matrix equations (5.12). The proof of Lemma 5.4 is
long and can be found in Appendix B. Here and in the rest of the paper the minimum
singular value of any matrix M is denoted by σmin(M).

Lemma 5.4. The matrix T in (5.13) has full row rank and its minimum singular
value is given by

σmin(T ) =

{
2 sin π

4 min (η,ε)+2 , ε 6= η

2 sin π
4η , ε = η

. (5.14)

The following simple lower bound on σmin(T ) is useful to get bounds that can be
easily handled and are related to the grade of the original matrix polynomial.

Corollary 5.5. Let T be the matrix in (5.13) and d = ε+ η + 1. Then

σmin(T ) ≥ 2
√

2

d
.
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Proof. It follows from (5.14) and the inequality sin(x) ≥ 2
√

2x/π for 0 ≤ x ≤ π/4.

Lemma 5.6 bounds the norm of the minimum 2-norm solution of (5.13) or, equiv-
alently, of the minimum Frobenius norm solution of the matrix equation (5.12), since
‖[vec(C)T , vec(D)T ]T ‖2 = ‖(C,D)‖F .

Lemma 5.6. Let (T + ∆T )x = b be the underdetermined linear system (5.13),
and let us assume that σmin(T ) > ‖∆T‖2. Then (T + ∆T )x = b is consistent and its
minimum norm solution (C0, D0) satisfies

‖(C0, D0)‖F ≤
1

δ
‖(∆A22,∆B22)‖F , (5.15)

where δ := σmin(T )− ‖∆T‖2.
Proof. From Weyl’s perturbation theorem for singular values [45, Theorem 3.3.16],

we get σmin(T + ∆T ) ≥ σmin(T )− ‖∆T‖2 > 0. Therefore, T + ∆T has full row rank
and the linear system (5.13) is consistent. Its minimum norm solution, (C0, D0), is
given by (T + ∆T )†b, where (T + ∆T )† denotes the Moore-Penrose pseudoinverse of
T + ∆T . Then,

‖(C0, D0)‖F ≤‖(T + ∆T )†‖2‖(∆A22,∆B22)‖F =
1

σmin(T + ∆T )
‖(∆A22,∆B22)‖F

≤ 1

σmin(T )− ‖∆T‖2
‖(∆A22,∆B22)‖F .

From Lemma 5.6, it is clear that the quantity δ = σmin(T ) − ‖∆T‖2 will play a
relevant role in our analysis. Therefore, we establish a tractable lower bound on δ.

Lemma 5.7. Let T and ∆T be the matrices in (5.13), let ∆L(λ) be the pencil in
(5.9), and d = ε+ η + 1. If ‖∆L(λ)‖F < 1/d, then

σmin(T )− ‖∆T‖2 ≥
2(
√

2− 1)

d
> 0 .

Proof. Using standard properties of norms and Kronecker products [45, Chapter
4] (pay particular attention to [45, p. 247, paragraph 1]), we get

‖∆T‖2 ≤

∥∥∥∥∥
[
−∆AT12 ⊗ Iεn
∆BT12 ⊗ Iεn

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
−Iηm ⊗∆A21

Iηm ⊗∆B21

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
−∆AT12

∆BT12

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
−∆A21

∆B21

]∥∥∥∥∥
2

≤

∥∥∥∥∥
[
−∆AT12

∆BT12

]∥∥∥∥∥
F

+

∥∥∥∥∥
[
−∆A21

∆B21

]∥∥∥∥∥
F

≤ 2‖∆L(λ)‖F .

From this inequality and Corollary 5.5, the result is obtained as follows:

σmin(T )− ‖∆T‖2 ≥
2
√

2

d
− 2‖∆L(λ)‖F >

2(
√

2− 1)

d
.

Theorem 5.8 is the key technical result of this section. It proves that the system
of quadratic Sylvester-like matrix equations (5.11) has a solution (C,D) such that
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‖(C,D)‖F . ‖∆L(λ)‖F , whenever ‖∆L(λ)‖F is properly upper bounded. As men-
tioned before, this theorem extends to underdetermined quadratic matrix equations
results proved by Stewart for equations with a unique solution [67, Theorem 5.1], [68,
Theorem 2.11, p. 242]. The proof of Theorem 5.8 follows those in [67, 68].

Theorem 5.8. There exists a solution (C,D) of the quadratic system of Sylvester-
like matrix equations (5.11) satisfying

‖(C,D)‖F ≤ 2
θ

δ
, (5.16)

whenever

δ > 0 and
θω

δ2
<

1

4
, (5.17)

where δ = σmin(T ) − ‖∆T‖2, θ := ‖(∆A22,∆B22)‖F , and ω := ‖(M0 + ∆A11,M1 +
∆B11)‖F .

Proof. Lemma 5.6 and the hypothesis δ > 0 guarantee that the linear system
of matrix equations (5.12) is consistent, and, even more, that it is consistent for any
right-hand side. Let the minimum norm solution of (5.12) be denoted by (C0, D0). It
satisfies

‖(C0, D0)‖F ≤
1

δ
‖(∆A22,∆B22)‖F =

θ

δ
=: ρ0,

according to Lemma 5.6. Then, let us define a sequence {(Ci, Di)}∞i=0 of pairs of
matrices as follows: for i > 0 the pair (Ci, Di) is the minimum norm solution of{

Ci(E
T
ηm −∆A12) + (Eεn −∆A21)Di = ∆A22 + Ci−1(M0 + ∆A11)Di−1

Ci(F
T
ηm + ∆B12) + (Fεn + ∆B21)Di = −∆B22 − Ci−1(M1 + ∆B11)Di−1

.

(5.18)

Therefore, vectorizing (5.18) and using the matrix T + ∆T defined in (5.13), we get[
vec(Ci)
vec(Di)

]
=

[
vec(C0)
vec(D0)

]
+ (T + ∆T )†

([
vec(Ci−1(M0 + ∆A11)Di−1)
−vec(Ci−1(M1 + ∆B11)Di−1)

])
.

(5.19)
We claim that the sequence {(Ci, Di)}∞i=0 converges to a solution (C,D) of (5.11)
satisfying (5.16). To prove this, we first show that the sequence {‖(Ci, Di)‖F }∞i=0 is
a bounded sequence. If ‖(Ci−1, Di−1)‖F ≤ ρi−1, then we have from (5.19) that

‖(Ci, Di)‖F ≤‖(C0, D0)‖F
+ ‖(T + ∆T )†‖2‖‖(Ci−1, Di−1)‖2F ‖(M0 + ∆A11,M1 + ∆B11)‖F

≤ρ0 + ρ2
i−1ωδ

−1 =: ρi .

We may write the quantity ρi in the equation above as ρi = ρ0(1 + κi), where κi
satisfies the recursion {

κ1 = ρ0ωδ
−1 = θωδ−2,

κi+1 = κ1(1 + κi)
2 .

(5.20)

The equation (5.20) is the fixed point iteration κi+1 = g(κi) with g(x) := κ1(1 + x)2

and with initial iterate κ1, which satisfies 0 ≤ κ1 < 1/4 according to (5.17). If
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κ1 = 0, then κi = 0 and ρi = ρ0 for all i ≥ 1, which means that the sequence
{‖(Ci, Di)‖F }∞i=0 is bounded. Next we consider the case 0 < κ1 < 1/4. It can be
proved that 0 < κ1 < κ2 < · · · < κi < · · · by induction as follows: it is obvious that
κ1 < κ2 and if we assume κi−1 < κi, then κi+1/κi = (1+κi)

2/(1+κi−1)2 > 1. Another
induction argument proves that 0 < κi < 1 for all i ≥ 1 as follows: by assumption
0 < κ1 < 1/4 < 1, and if 0 < κi < 1, then 0 < κi+1 = κ1(1 + κi)

2 < κ1 4 < 1. The
iteration κi+1 = g(κi) has two positive fixed points: one strictly larger than 1 and the
other equal to κ := 2κ1/(1 − 2κ1 +

√
1− 4κ1) and strictly smaller than 1. Observe

that g′(x) = 2κ1(1 + x) satisfies 0 < g′(x) < 4κ1 < 1 for any 0 < x < 1. Thus the
mean value theorem implies |κi+1 − κ| = |g(κi) − g(κ)| < 4κ1|κi − κ|, which in turn
implies |κi+1 − κ| < (4κ1)i|κ1 − κ| and

κ = lim
i→∞

κi =
2κ1

1− 2κ1 +
√

1− 4κ1
< 1,

and κi < κ for all i ≥ 1. Thus, the norms of the elements of the sequence {(Ci, Di)}∞i=0

are bounded as

‖(Ci, Di)‖F ≤ ρ := lim
i→∞

ρi = ρ0(1 + κ) . (5.21)

We now show that the sequence {(Ci, Di)}∞i=0 converges provided that 2δ−1ωρ <

1, which is ensured by (5.17). For this purpose, let Si = (S
(C)
i , S

(D)
i ) := (Ci+1 −

Ci, Di+1 −Di). Then (5.19) implies

‖Si‖F ≤ ‖(T + ∆T )†‖2
∥∥∥∥[vec (Ci(M0 + ∆A11)Di − Ci−1(M0 + ∆A11)Di−1)

vec (Ci(M1 + ∆B11)Di − Ci−1(M1 + ∆B11)Di−1)

]∥∥∥∥
2

≤ δ−1

∥∥∥∥∥∥
vec

(
S

(C)
i−1(M0 + ∆A11)Di + Ci−1(M0 + ∆A11)S

(D)
i−1

)
vec

(
S

(C)
i−1(M1 + ∆B11)Di + Ci−1(M1 + ∆B11)S

(D)
i−1

)∥∥∥∥∥∥
2

≤ 2δ−1ωρ‖Si−1‖F .

Therefore, the sequence {(Ci, Di)}∞i=0 is a Cauchy sequence, since 2δ−1ωρ < 1, and
must have a limit (C,D) := limi→∞(Ci, Di). Taking limits of both sides of (5.18), we
get that (C,D) is a solution of (5.11). Finally, from (5.21), ‖(C,D)‖F ≤ ρ0(1 + κ) <
2ρ0 = 2δ−1θ, which concludes the proof.

Theorem 5.9 completes the first step of the backward error analysis. Its proof
follows from Theorem 5.8 and norm inequalites. The numerical constants appearing
in Theorem 5.9 are not optimal and have been chosen to keep the analysis and the
bounds simple.

Theorem 5.9. Let L(λ) be an (ε, n, η,m)-block Kronecker pencil as in (4.1), let
ε+ η+ 1 = d, and let ∆L(λ) be any pencil with the same size as L(λ) and such that

‖∆L(λ)‖F <

(
(
√

2− 1)

d

)2
1

1 + ‖λM1 +M0‖F
. (5.22)

Then, there exist matrices C ∈ Fεn×(η+1)m and D ∈ F(ε+1)n×ηm that satisfy

‖(C,D)‖F ≤
d‖∆L(λ)‖F

(
√

2− 1)
, (5.23)
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and the equality (5.6) with

max{‖∆L̃21(λ)‖F , ‖∆L̃12(λ)‖F }

≤ ‖∆L(λ)‖F
(

1 +
d

(
√

2− 1)
(‖λM1 +M0‖F + ‖∆L(λ)‖F )

)
. (5.24)

Proof. The notation in (5.9) for the blocks of ∆L(λ) is used throughout the proof.
We first prove that (5.22) implies (5.17) and, so, the existence of C and D satisfying
(5.6). For this purpose, note that (5.22) implies ‖∆L(λ)‖F < 1/d < 1 and, therefore,
that Lemma 5.7 holds and that δ > 0. With this, and the notation in Theorem 5.8,
we get

θω

δ2
≤ ‖∆L(λ)‖F (‖λM1 +M0‖F + ‖∆L(λ)‖F )

4(
√

2−1)2

d2

<
1

4
,

and (5.17) indeed holds. Then, Theorem 5.8 implies that there exist matrices C and
D satisfying (5.6) and

‖(C,D)‖F ≤ 2
θ

δ
≤ d‖∆L(λ)‖F

(
√

2− 1)
,

which proves (5.23). Finally, from (5.5) and (5.6), we obtain that

∆L̃12(λ) = (λM1 +M0 + ∆L11(λ))D + ∆L12(λ),

∆L̃21(λ) = C(λM1 +M0 + ∆L11(λ)) + ∆L21(λ) ,

which combined with (5.23) leads to (5.24).

5.2. Second step: proving that L(λ) + ∆L̃(λ) in (5.6) is a strong block
minimal bases pencil. The main result of this section is Theorem 5.17. From
the definition of strong block minimal bases pencils, it is not surprising that part of
the proof of Theorem 5.17 relies on algebraic results that characterize when a matrix
polynomial is a minimal basis with all its row degrees equal and such that any minimal
basis dual to it has also all its row degrees equal. In the first part of this section, we
establish such characterizations. In this process, we use the complete eigenstructure
of a matrix polynomial. Since it may include infinite eigenvalues, whose definition
depends on which grade is chosen for the polynomial [17, Section 2], we adopt the
convention in this section that anytime a complete eigenstructure is mentioned, the
grade of the corresponding polynomial is equal to its degree.

A simple result that is used in this section is the next lemma.
Lemma 5.10. Let Q(λ) ∈ F[λ]m×n with m < n. Then, Q(λ) is a minimal basis

with all its row degrees equal if and only if the complete eigenstructure of Q(λ) consists
of only n−m right minimal indices.

Proof. It is a simple consequence of Theorem 2.2 and the fact that if all the row
degrees of Q(λ) =

∑q
i=0Qiλ

i (where Qq 6= 0) are equal, then its highest row degree
coefficient matrix is equal to its leading coefficient Qq. So, if Q(λ) is a minimal basis
with all its row degrees equal, then Theorem 2.2 guarantees that Q(λ) has no finite
eigenvalues, since Q(λ0) has full row rank for all λ0 ∈ F, and that Q(λ) has no infinite
eigenvalues, since it is row reduced. In addition, Q(λ) has no left minimal indices,
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since it has full row rank. Therefore, the complete eigenstructure of Q(λ) consists of
only n−m right minimal indices.

Conversely, if the complete eigenstructure of Q(λ) consists of only n − m right
minimal indices, then rankQq = rankQ(λ) = m, because Q(λ) has neither infinite
eigenvalues nor left minimal indices. This implies that all the row degrees of Q(λ)
are equal, since otherwise rankQq < m, and that Q(λ) is row reduced. Moreover,
rankQ(λ0) = m for all λ0 ∈ F because Q(λ) has no finite eigenvalues, and we get
from Theorem 2.2 that Q(λ) is a minimal basis with all its row degrees equal.

Convolution matrices will be useful in our characterizations of minimal bases and
in a number of perturbation results. For any matrix polynomial Q(λ) =

∑q
i=0Qiλ

i

of grade q and arbitrary size, we define in the spirit of Gantmacher [33, Chapter XII]
the sequence of its convolution matrices as follows

Cj(Q(λ)) =



Qq
Qq−1 Qq
... Qq−1

. . .

Q0

...
. . . Qq

Q0 Qq−1

. . .
...
Q0


︸ ︷︷ ︸

j + 1 block columns

, for j = 0, 1, 2, . . .. (5.25)

Observe that for every j the matrix Cj(Q(λ)) is a constant matrix. In particular for
j = 0, the matrix C0(Q(λ)) is a block column matrix whose block entries are the
matrix coefficients of the polynomial. The fundamental property of these convolution
matrices is that if Z(λ) is any matrix polynomial of grade j for which the product
Q(λ)Z(λ) is defined and is considered to have grade q + j, then

C0(Q(λ)Z(λ)) = Cj(Q(λ))C0(Z(λ)) . (5.26)

Another easy property of convolution matrices that we often use is that ‖Cj(Q(λ))‖F
=
√
j + 1 ‖Q(λ)‖F . Note also that if S(λ) is another matrix polynomial with the

same grade as Q(λ), then Cj(Q(λ) + S(λ)) = Cj(Q(λ)) + Cj(S(λ)), for all j. The
convolution matrices for pencils are particularly simple. For instance, for the pencil
Lε(λ)⊗ In in the (2, 1)-block of (4.1), we have with the notation in (5.8) that

Cε−1(Lε(λ)⊗ In) =


Fεn

−Eεn
. . .

. . . Fεn
−Eεn


︸ ︷︷ ︸
ε block columns

 ε+ 1 block rows . (5.27)

Lemma 5.10 motivates us to look deeper into the right minimal indices of a matrix
polynomial Q(λ) and into the rational right null subspaceNr(Q) defined in (2.2). This
is the purpose of Lemma 5.11, which proves for general matrix polynomials ideas that
can be found in [33, Chapter XII] only for matrix pencils.

Lemma 5.11. Let Q(λ) ∈ F[λ]m×n and let Cs(Q(λ)), s = 0, 1, 2, ..., be the
sequence of convolution matrices of Q(λ). Then, the following statements hold.
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(a) Let v(λ) ∈ F[λ]n×1 be a polynomial vector of grade j. Then, v(λ) ∈ Nr(Q) if
and only if C0(v(λ)) ∈ Nr(Cj(Q(λ))).

(b) The smallest right minimal index of Q(λ) is j if and only if Cj−1(Q(λ)) has
full column rank and Cj(Q(λ)) does not have full column rank.

(c) If j is the smallest right minimal index of Q(λ) and dimNr(Cj(Q(λ))) = p,
then Q(λ) has at least p minimal indices equal to j.

Proof. Part (a) follows immediately from (5.26). Before proceeding, note that
part (a) establishes the natural bijection1 v(λ) 7−→ C0(v(λ)) between the set of poly-
nomial vectors of grade j in Nr(Q) ⊆ F(λ)n and Nr(Cj(Q(λ))) ⊆ F(j+1)n×1. Indeed
v(λ) 7→ C0(v(λ)) is a bijection, since its inverse can be trivially constructed as fol-
lows: partition any x ∈ Nr(Cj(Q(λ))) ⊆ F(j+1)n×1 as x = [xTj , . . . , x

T
1 , x

T
0 ]T , where

xi ∈ Fn×1, and note that

x 7−→
j∑
i=0

xiλ
i =: P(x;λ) ∈ Nr(Q) (5.28)

is the inverse of v(λ) 7→ C0(v(λ)).
Part (b). From part (a), it is obvious that if the smallest right minimal index

of Q(λ) is j, then Cj−1(Q(λ)) has full column rank but Cj(Q(λ)) does not. The
converse also follows from part (a) by taking into account that if Cj−1(Q(λ)) has full
column rank, then Cj−2(Q(λ)), . . . , C0(Q(λ)) have also full column ranks. Therefore,
Nr(Cj−1(Q(λ))) = {0}, . . . ,Nr(C1(Q(λ))) = {0},Nr(C0(Q(λ))) = {0} and part (a)
implies that Nr(Q) does not include vectors different from 0 of degree less than j,
but does include vectors of degree j because Cj(Q(λ)) does not have full column rank
and so Nr(Cj(Q(λ))) 6= {0}.

The proof of part (c) requires more work. Let {v(1), . . . , v(p)} be a basis of
Nr(Cj(Q(λ))) and consider, according to (5.28), the vector polynomials P(v(k);λ) =∑j
i=0 v

(k)
i λi ∈ Nr(Q) for k = 1, . . . , p. Note that P(v(k);λ) 6= 0, because v(k) 6= 0,

and that deg(P(v(k);λ)) = j, because otherwise Q(λ) would have right minimal in-
dices smaller than j. The result follows from proving that P(v(1);λ), . . . ,P(v(p);λ)
are linearly independent. We prove this by contradiction. Assume that there exists a
linear combination

a1(λ)P(v(1);λ) + a2(λ)P(v(2);λ) + · · ·+ ap(λ)P(v(p);λ) = 0,

where, without loss of generality, we assume that a1(λ), . . . , ap(λ) are scalar poly-
nomials not all equal to zero (if they were rational functions we may multiply the
equation above by their least common denominator). The coefficient of the highest
power in the equation above satisfies

c1v
(1)
j + c2v

(2)
j + · · ·+ cpv

(p)
j = 0,

for some constants c1, c2, . . . , cp, where at least one of them is nonzero. Then, let us
define the polynomial vector q(λ) :=

∑p
k=1 ckP(v(k);λ). Notice that q(λ) ∈ Nr(Q)

and that deg(q(λ)) < j. Then q(λ) = 0, because otherwise Q(λ) would have right
minimal indices smaller than j, which implies

∑p
k=1 ckv

(k) = 0. This is a contradiction
since {v(1), v(2), . . . , v(p)} is a linearly independent set of vectors.

1We emphasize that this bijection is not a linear map since the fields of the linear spaces cor-
responding to the domain and the codomain are different. Nevertheless, it has some obvious linear
properties that can be used.
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Next, we study when arbitrary pencils with the same size as the (2, 1)-block of

L(λ) + ∆L̃(λ) in (5.6) are the corresponding block of a strong block minimal bases
pencil.

Theorem 5.12. Let A+ λB ∈ F[λ]εn×(ε+1)n and let Cs(A+ λB), s = 0, 1, 2, ...,
be the sequence of convolution matrices of A+ λB. Then, A+ λB is a minimal basis
with all its row degrees equal to 1 and with all the row degrees of any minimal basis
dual to it equal to ε if and only if Cε−1(A + λB) ∈ Fε(ε+1)n×ε(ε+1)n is nonsingular

and Cε(A+ λB) ∈ Fε(ε+2)n×(ε+1)2n has full row rank.
Proof. Bear in mind that the right minimal indices of a minimal basis are the row

degrees of any minimal basis dual to it. First, assume that A+λB is a minimal basis
with all its row degrees equal to 1 and with all the row degrees of any minimal basis
dual to it equal to ε. Then, the complete eigenstructure of A+ λB consists of only n
right minimal indices equal to ε, by Lemma 5.10. From Lemma 5.11(b), we get that
Cε−1(A + λB) has full column rank and, since it is square, it must be nonsingular.
From Lemma 5.11(c), we get that n ≥ dimNr(Cε(A+λB)) = (ε+1)2n−rank(Cε(A+
λB)), which implies that rank(Cε(A+ λB)) ≥ (ε+ 1)2n− n = ε(ε+ 2)n and, finally,
that rank(Cε(A+ λB)) = ε(ε+ 2)n, because Cε(A+ λB) has ε(ε+ 2)n rows.

Next, assume that Cε−1(A+λB) is nonsingular and Cε(A+λB) has full row rank.
Therefore, dimNr(Cε(A+λB)) = (ε+1)2n−rank(Cε(A+λB)) = (ε+1)2n−ε(ε+2)n =
n. From Lemma 5.11(b), we get that the smallest right minimal index of A+λB is ε,
and from Lemma 5.11(c), we get that A+λB has at least n right minimal indices equal
to ε. Also note that the degree of A+λB must be 1, since otherwise its minimal indices
would be all equal to zero. Combining this information with the index sum theorem
[17, Theorem 6.5] applied to A+λB and with the obvious bound εn ≥ rank(A+λB),
we get

nε ≥ rank(A+ λB) ≥ nε+ δ(A+ λB) + µleft(A+ λB), (5.29)

where δ(A + λB) is the sum of the degrees of all the elementary divisors (finite and
infinite) of A + λB and µleft(A + λB) is the sum of the left minimal indices of
A+ λB. The inequalities (5.29) imply that rank(A+ λB) = nε and that A+ λB has
no elementary divisors at all. Moreover, rank(A+ λB) = nε implies that A+ λB has
no left minimal indices and that it has exactly n right minimal indices. Therefore,
the complete eigenstructure of A+ λB consists of only n right minimal indices equal
to ε, which implies, by Lemma 5.10, that A+ λB is a minimal basis with all its row
degrees equal to 1 and with all the row degrees of any minimal basis dual to it equal
to ε.

We now present the counterpart of Theorem 5.12 concerning matrix polynomials
that may be minimal bases dual to the pencils considered in Theorem 5.12. The proof
of Theorem 5.13 is omitted, since it is very similar to that of Theorem 5.12 and is
based again on Lemmas 5.10 and 5.11.

Theorem 5.13. Let Q(λ) =
∑ε
i=0Qiλ

i ∈ F[λ]n×(ε+1)n and let Cs(Q(λ)), s =
0, 1, 2, ..., be the sequence of convolution matrices of Q(λ). Then, Q(λ) is a minimal
basis with all its row degrees equal to ε and with all the row degrees of any minimal
basis dual to it equal to 1 if and only if C0(Q(λ)) ∈ F(ε+1)n×(ε+1)n is nonsingular and
C1(Q(λ)) ∈ F(ε+2)n×2(ε+1)n has full row rank.

Theorems 5.12 and 5.13 have established the characterizations of a minimal basis
with all its row degrees equal and with all the row degrees of any minimal basis dual
to it also equal that are needed in this paper. We now return to our perturbation
problem for L(λ) + ∆L̃(λ) in (5.6). In Theorem 5.14, we give some properties of
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the unperturbed (2, 1)-block of L(λ), that is, Lε(λ)⊗ In, and its dual minimal basis
Λε(λ)T ⊗ In. The proof is given in Appendix C.

Theorem 5.14. Let Lε(λ) and Λε(λ)T be the pencil and the row vector polyno-
mial defined in (2.3) and (2.4), respectively. Then the following statements hold.

(a) Cε−1(Lε(λ) ⊗ In) ∈ Fε(ε+1)n×ε(ε+1)n is nonsingular and Cε(Lε(λ) ⊗ In) ∈
Fε(ε+2)n×(ε+1)2n has full row rank.

(b) C0(Λε(λ)T ⊗ In) = I(ε+1)n and, therefore, is nonsingular, and C1(Λε(λ)T ⊗
In) ∈ F(ε+2)n×2(ε+1)n has full row rank.

(c) σmin(Cε−1(Lε(λ)⊗ In)) = σmin(Cε(Lε(λ)⊗ In)) = 2 sin
π

(4ε+ 2)
≥ 3

2(ε+ 1)
.

(d) σmin(C0(Λε(λ)T ⊗ In)) = σmin(C1(Λε(λ)T ⊗ In)) = 1.

As a corollary of Theorem 5.12 and Theorem 5.14(a)-(c), we obtain the following

perturbation result for the (2, 1)-block of L(λ) + ∆L̃(λ) in (5.6).

Corollary 5.15. Let ∆L̃21(λ) be any pencil of size εn× (ε+ 1)n such that

‖∆L̃21(λ)‖F <
3

2(ε+ 1)
3
2

. (5.30)

Then, Lε(λ)⊗ In + ∆L̃21(λ) is a minimal basis with all its row degrees equal to 1 and
with all the row degrees of any minimal basis dual to it equal to ε.

Proof. Observe that (5.30) implies that ‖Cε−1(∆L̃21(λ))‖2 ≤ ‖Cε−1(∆L̃21(λ))‖F
=
√
ε ‖∆L̃21(λ)‖F < 3

2(ε+1) ≤ σmin(Cε−1(Lε(λ)⊗ In)), where we have used Theorem

5.14(c). Therefore, Cε−1(Lε(λ)⊗In+∆L̃21(λ)) = Cε−1(Lε(λ)⊗In)+Cε−1(∆L̃21(λ))
is nonnsingular, as a consequence of Theorem 5.14(a) and Weyl’s perturbation the-
orem for singular values [45, Theorem 3.3.16]. An analogous argument proves that

Cε(Lε(λ)⊗ In+ ∆L̃21(λ)) has full row rank. The result follows from Theorem 5.12.
As a corollary of Theorem 5.13 and Theorem 5.14(b)-(d), we obtain the following

perturbation result for the minimal basis dual to Lε(λ)⊗ In.
Corollary 5.16. Let ∆Rε(λ)T be a matrix polynomial of size n × (ε + 1)n,

grade ε, and such that

‖∆Rε(λ)‖F <
1√
2
. (5.31)

Then, Λε(λ)T ⊗ In + ∆Rε(λ)T is a minimal basis with all its row degrees equal to ε
and with all the row degrees of any minimal basis dual to it equal to 1.

Proof. Observe that (5.31) implies that ‖C1(∆Rε(λ)T )‖2 ≤ ‖C1(∆Rε(λ)T )‖F =√
2 ‖∆Rε(λ)T ‖F < 1 = σmin(C1(Λε(λ)T ⊗In)), where we have used Theorem 5.14(d).

Therefore, C1(Λε(λ)T ⊗ In + ∆Rε(λ)T ) = C1(Λε(λ)T ⊗ In) + C1(∆Rε(λ)T ) has full
row rank, as a consequence of Theorem 5.14(b) and Weyl’s perturbation theorem for
singular values. An analogous argument proves that C0(Λε(λ)T ⊗ In + ∆Rε(λ)T ) is
nonsingular. The result follows from Theorem 5.13.

Now, we are in the position of proving the main result of this section.
Theorem 5.17. Let Lε(λ) and Λε(λ)T be the pencil and the row vector polyno-

mial defined in (2.3) and (2.4), respectively, and let ∆L̃21(λ) be any pencil of size
εn× (ε+ 1)n such that

‖∆L̃21(λ)‖F <
1

2(ε+ 1)3/2
. (5.32)
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Then, there exists a matrix polynomial ∆Rε(λ)T with size n × (ε + 1)n and grade ε
such that

(a) Lε(λ) ⊗ In + ∆L̃21(λ) and Λε(λ)T ⊗ In + ∆Rε(λ)T are dual minimal bases,
with all the row degrees of the former equal to 1 and with all the row degrees
of the latter equal to ε, and

(b) ‖∆Rε(λ)‖F ≤
√

2 (ε+ 1) ‖∆L̃21(λ)‖F <
1√
2

.

Proof. The hypothesis (5.32) implies ‖∆L̃21(λ)‖F < 3/(2(ε + 1)3/2). Therefore,

from Corollary 5.15, we get that Lε(λ)⊗ In + ∆L̃21(λ) is a minimal basis with all its
row degrees equal to 1 and with all the row degrees of any minimal basis dual to it
equal to ε, and, according to Theorem 5.12, we also have that Cε(Lε(λ)⊗In+∆L̃21(λ))
has full row rank. Using this fact, the goal of the rest of the proof is to show that
there exists a matrix polynomial ∆Rε(λ)T with grade ε, that satisfies the bound in
Theorem 5.17(b), and such that

(Lε(λ)⊗ In + ∆L̃21(λ)) (Λε(λ)⊗ In + ∆Rε(λ)) = 0 . (5.33)

Once this is proved, the proof of Theorem 5.17 concludes by the application of Corol-
lary 5.16.

Since (Lε(λ) ⊗ In) (Λε(λ) ⊗ In) = 0, the equation (5.33) is equivalent to the
following linear equation for ∆Rε(λ)

(Lε(λ)⊗ In + ∆L̃21(λ)) (∆Rε(λ)) = −∆L̃21(λ) (Λε(λ)⊗ In) . (5.34)

Both sides of (5.34) have grade ε+ 1, therefore, by using convolution matrices, (5.34)

is equivalent to C0((Lε(λ)⊗ In + ∆L̃21(λ)) (∆Rε(λ))) = −C0(∆L̃21(λ) (Λε(λ)⊗ In)),
which in turn, by using (5.26), is equivalent to

Cε(Lε(λ)⊗ In + ∆L̃21(λ)) C0(∆Rε(λ)) = −C0(∆L̃21(λ) (Λε(λ)⊗ In)) . (5.35)

Observe that (5.35) is a consistent linear system for the unknown C0(∆Rε(λ)), since

Cε(Lε(λ)⊗ In+ ∆L̃21(λ)) has full row rank, with minimum Frobenius norm solution

C0(∆Rε(λ)) = −Cε(Lε(λ)⊗ In + ∆L̃21(λ))† C0(∆L̃21(λ) (Λε(λ)⊗ In)) . (5.36)

From (5.36), we get the bound

‖C0(∆Rε(λ))‖F ≤ ‖Cε(Lε(λ)⊗ In + ∆L̃21(λ))†‖2 ‖C0(∆L̃21(λ) (Λε(λ)⊗ In))‖F

=
1

σmin(Cε(Lε(λ)⊗ In + ∆L̃21(λ)))
‖C0(∆L̃21(λ) (Λε(λ)⊗ In))‖F .

(5.37)

In the rest of the proof, the two factors in the right-hand side of (5.37) are bounded.
To bound the first factor, we use Theorem 5.14(c) and (5.32) as follows:

1

σmin(Cε(Lε(λ)⊗ In + ∆L̃21(λ)))
≤ 1

σmin(Cε(Lε(λ)⊗ In))− ‖Cε(∆L̃21(λ))‖2

≤ 1

σmin(Cε(Lε(λ)⊗ In))− ‖Cε(∆L̃21(λ))‖F

≤ 1
3

2(ε+1) −
√
ε+ 1 ‖∆L̃21(λ))‖F

≤ 1
3

2(ε+1) −
1

2(ε+1)

= (ε+ 1) . (5.38)
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To bound the second factor of (5.37), we use Lemma 2.15(d) with d = 1 as follows:

‖C0(∆L̃21(λ) (Λε(λ)⊗In))‖F = ‖∆L̃21(λ) (Λε(λ)⊗In)‖F ≤
√

2 ‖∆L̃21(λ)‖F . (5.39)

Finally, by combining (5.37, 5.38, 5.39), the following bound is obtained

‖∆Rε(λ)‖F = ‖C0(∆Rε(λ))‖F ≤
√

2(ε+ 1) ‖∆L̃21(λ)‖F ≤
1√

2(ε+ 1)
,

and the proof is finished.
Theorem 5.17 can be applied with ε replaced by η and In replaced by Im, i.e., to

the transpose of the (1, 2)-block of L(λ) + ∆L̃(λ) in (5.6). This allows us to state, as
a corollary of Theorem 5.17, the final conclusion of this section in Theorem 5.18.

Theorem 5.18. Let L(λ) + ∆L̃(λ) be the pencil in (5.6) and let d = ε+ η+ 1. If

max{‖∆L̃21(λ)‖F , ‖∆L̃12(λ)‖F } <
1

2 d3/2
,

then L(λ) + ∆L̃(λ) is a strong block minimal bases pencil. Moreover, there exist
matrix polynomials ∆Rε(λ)T and ∆Rη(λ)T of grades ε and η, respectively, such that

Λε(λ)T ⊗ In + ∆Rε(λ)T is a minimal basis dual to the (2, 1)-block of L(λ) + ∆L̃(λ)
with all its row degrees equal to ε, Λη(λ)T ⊗ Im + ∆Rη(λ)T is a minimal basis dual

to the transpose of the (1, 2)-block of L(λ) + ∆L̃(λ) with all its row degrees equal to
η, and

max{‖∆Rε(λ)‖F , ‖∆Rη(λ)‖F } ≤
√

2 d max{‖∆L̃21(λ)‖F , ‖∆L̃12(λ)‖F } <
1√
2
.

The bound max{‖∆Rε(λ)‖F , ‖∆Rη(λ)‖F } < 1/
√

2 in the equation above has the
main purpose to emphasize that the hypotheses of Corollary 5.16 hold. In addition,
it motivates the assumptions in Lemmas 5.19 and 5.20 that allow us to get rid of
nonlinear terms in bounding ‖∆P (λ)‖F .

5.3. Third step: Mapping perturbations to a block Kronecker pencil
onto the matrix polynomial. In this section, we combine the results in Sections 5.1
and 5.2 to obtain our main backward error (or perturbation) results, that is, Theorem
5.21 for general block Kronecker pencils as in (4.1) and Theorem 5.22 for degenerate
block Kronecker pencils in which either ε = 0 or η = 0, that is, in which one of the
anti-diagonal blocks and the zero block are not present. According to Remark 5.1
both cases require somewhat different treatments which makes the discussion longer.

The proofs of Theorems 5.21 and 5.22 are direct consequences of previous re-
sults, but require some delicate (although elementary) norm manipulations which are
simplified if the technical Lemmas 5.19 and 5.20 are stated in advance. The rele-
vance of these lemmas comes from the fact that the strong block minimal bases pencil
L(λ) + ∆L̃(λ) in Theorem 5.18 is a strong linearization of the matrix polynomial in
(5.7), as a consequence of Theorem 3.3. The numerical constants appearing in Lem-
mas 5.19 and 5.20, and in the rest of the analysis, are not optimal but allow us to
keep the analysis simple.

Lemma 5.19. Let P (λ) and P (λ) + ∆P (λ) be the matrix polynomials in (5.4)
and (5.7), respectively. If the matrix polynomials ∆Rε(λ) and ∆Rη(λ) of grades ε
and η, respectively, satisfy ‖∆Rε(λ)‖F < 1/

√
2 and ‖∆Rη(λ)‖F < 1/

√
2, then

‖∆P (λ)‖F ≤
√
d (5‖∆L11(λ)‖F + 4‖λM1 +M0‖F max{‖∆Rε(λ)‖F , ‖∆Rη(λ)‖F }) ,
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where d = ε+ η + 1.
Proof. For brevity, we use in this proof the notation ΛTεn := Λε(λ)T ⊗In and omit

the dependence on λ of some matrix polynomials. From (5.4) and (5.7), we get that

∆P (λ) =∆RTη (λM1 +M0)Λεn + ΛTηm∆L11Λεn + ∆RTη ∆L11Λεn

+ ΛTηm(λM1 +M0)∆Rε + ∆RTη (λM1 +M0)∆Rε

+ ΛTηm∆L11∆Rε + ∆RTη ∆L11∆Rε . (5.40)

The result follows from bounding the Frobenius norm of each of the terms in the
right-hand side of (5.40). For this purpose, Lemma 2.15 is used and, in addition, the
inequalities ‖∆Rε(λ)‖F < 1/

√
2 and ‖∆Rη(λ)‖F < 1/

√
2 are used in those terms

that are not linear in ∆L11(λ), ∆Rε(λ), and ∆Rη(λ) for bounding them with linear
terms. Let us show how to bound only one of the terms in (5.40), since the rest are
bounded via similar procedures,

‖∆RTη (λM1 +M0)∆Rε‖F ≤
√
d ‖∆Rη‖F ‖(λM1 +M0)∆Rε‖F

≤
√

2d ‖∆Rη‖F ‖λM1 +M0‖F ‖∆Rε‖F
≤
√
d ‖λM1 +M0‖F ‖∆Rε‖F .

Lemma 5.20 is the counterpart of Lemma 5.19 that is needed to deal with pertur-
bations of degenerate block Kronecker pencils. The proof of Lemma 5.20 is omitted
because it is similar to, and simpler than, the one of Lemma 5.19.

Lemma 5.20.
(a) Let us consider the matrix polynomials

P (λ) = (λM1 +M0)(Λε(λ)⊗ In),

P (λ) + ∆P (λ) = (λM1 +M0 + ∆L11(λ)) (Λε(λ)⊗ In + ∆Rε(λ)) .

If the matrix polynomial ∆Rε(λ) satisfies ‖∆Rε(λ)‖F < 1/
√

2, then

‖∆P (λ)‖F ≤ 3 ‖∆L11(λ)‖F +
√

2 ‖λM1 +M0‖F ‖∆Rε(λ)‖F .

(b) Let us consider the matrix polynomials

P (λ) = (Λη(λ)T ⊗ Im)(λM1 +M0),

P (λ) + ∆P (λ) =
(
Λη(λ)T ⊗ Im + ∆Rη(λ)T

)
(λM1 +M0 + ∆L11(λ)) .

If the matrix polynomial ∆Rη(λ) satisfies ‖∆Rη(λ)‖F < 1/
√

2, then

‖∆P (λ)‖F ≤ 3 ‖∆L11(λ)‖F +
√

2 ‖λM1 +M0‖F ‖∆Rη(λ)‖F .

Next, we state and prove the main results of Section 5 concerning perturbations
of the block Kronecker pencils defined and studied in Section 4. Recall that these
pencils are strong linearizations of prescribed matrix polynomials whose right (resp.
left) minimal indices are obtained by summing ε (resp. η) to each of the right (resp.
left) minimal indices of the matrix polynomial (see Theorems 4.2 and 4.4).

Theorem 5.21. Let P (λ) =
∑d
i=0 Piλ

i ∈ F[λ]m×n and let L(λ) be an (ε, n, η,m)-
block Kronecker pencil with d = ε + η + 1 such that P (λ) = (Λη(λ)T ⊗ Im)(λM1 +
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M0)(Λε(λ)⊗ In), where λM1 +M0 is the (1, 1)-block in the natural partition of L(λ)
and Λk(λ) is the vector polynomial in (2.4). If ∆L(λ) is any pencil with the same
size as L(λ) and such that

‖∆L(λ)‖F < (
√

2− 1)2 1

d5/2

1

1 + ‖λM1 +M0‖F
, (5.41)

then L(λ) + ∆L(λ) is a strong linearization of a matrix polynomial P (λ) + ∆P (λ)
with grade d and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 14 d5/2 ‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F )
‖∆L(λ)‖F
‖L(λ)‖F

.

In addition, the right minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by ε, and the left minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by η.

Proof. Observe that the condition (5.41) implies that (5.22) holds. Therefore,
we can apply Theorem 5.9 to L(λ) + ∆L(λ) for proving that it is strictly equivalent

to the pencil L(λ) + ∆L̃(λ) in (5.6) and thus both pencils have the same complete
eigenstructures. By combining (5.41), which implies d‖∆L(λ)‖F < (

√
2 − 1), with

(5.24), we get the following bound

max{‖∆L̃21(λ)‖F , ‖∆L̃12(λ)‖F } ≤ ‖∆L(λ)‖F
(

2 +
d√

2− 1
‖λM1 +M0‖F

)
(5.42)

≤ (
√

2− 1)
1

d3/2
<

1

2

1

d3/2
,

which allows us to apply Theorem 5.18 to L(λ) + ∆L̃(λ). Then, L(λ) + ∆L̃(λ) is
a strong block minimal bases pencil which, according to Theorem 3.3, is a strong
linearization of the matrix polynomial P (λ) + ∆P (λ) in (5.7). Moreover, Theorem

3.6 guarantees that the right minimal indices of L(λ) + ∆L̃(λ) are those of P (λ) +

∆P (λ) shifted by ε, and that the left minimal indices of L(λ) + ∆L̃(λ) are those of
P (λ) + ∆P (λ) shifted by η. The same holds for L(λ) + ∆L(λ), since it is strictly

equivalent to L(λ)+∆L̃(λ). It only remains to bound ‖∆P (λ)‖F . For this purpose, we
combine Lemma 5.19 and the bound on max{‖∆Rε(λ)‖F , ‖∆Rη(λ)‖F } in Theorem
5.18. By using Theorem 5.18 and (5.42), the inequality

max{‖∆Rε(λ)‖F , ‖∆Rη(λ)‖F } ≤
√

2

(
√

2− 1)
d2 ‖∆L(λ)‖F (1 + ‖λM1 +M0‖F ) ,

is proved. If this inequality is introduced in the bound of Lemma 5.19, then we obtain

‖∆P (λ)‖F ≤ 14 d5/2 ‖∆L(λ)‖F (1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F ) ,

and the proof concludes.
Next, we state and prove Theorem 5.22, which is the counterpart of Theorem

5.21 for degenerate block Kronecker pencils. For brevity, degenerate block Kronecker
pencils are called either (0, n, η,m)-block Kronecker pencils when the second block
row in (4.1) is missing or (ε, n, 0,m)-block Kronecker pencils when the second block
column in (4.1) is missing, i.e., they correspond to taking either ε = 0 or η = 0. We
emphasize that the perturbation bound in Theorem 5.22 is smaller than the one in
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Theorem 5.21 because performing the strict equivalence (5.6) is not needed in the
degenerate case. The most relevant difference in Theorem 5.22 with respect to the
bound in Theorem 5.21 is that the term ‖λM1 + M0‖2F is not present, which is in
agreement with the first order results obtained in [20] for Fiedler matrices (not pencils)
of scalar monic polynomials.

Theorem 5.22. Let P (λ) =
∑d
i=0 Piλ

i ∈ F[λ]m×n and let L(λ) be either a
(0, n, η,m)-block Kronecker pencil with d = η + 1 such that P (λ) = (Λη(λ)T ⊗
Im)(λM1 + M0) or an (ε, n, 0,m)-block Kronecker pencil with d = ε + 1 such that
P (λ) = (λM1 + M0)(Λε(λ) ⊗ In), where λM1 + M0 is the (1, 1)-block in the natural
partition of L(λ) and Λk(λ) is the vector polynomial in (2.4). If ∆L(λ) is any pencil
with the same size as L(λ) and such that

‖∆L(λ)‖F <
1

2 d3/2
, (5.43)

then L(λ) + ∆L(λ) is a strong linearization of a matrix polynomial P (λ) + ∆P (λ)
with grade d and such that

‖∆P (λ)‖F
‖P (λ)‖F

≤ 2 d
‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F )
‖∆L(λ)‖F
‖L(λ)‖F

.

In addition, the right minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by ε, and the left minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by η, where either ε = 0 or η = 0.

Proof. We simply sketch the proof, since it follows the same ideas as the proof
of Theorem 5.21. We remind the reader of Remark 3.5, which implies that either the
last block row or last block column of L(λ) + ∆L(λ) is empty. Thus, in these limiting

cases, we can directly apply Theorem 5.18 to L(λ) + ∆L(λ) = L(λ) + ∆L̃(λ). After
that, it only remains to prove the bound on ‖∆P (λ)‖F . For this purpose, we combine
Lemma 5.20 and the bound on max{‖∆Rε(λ)‖F , ‖∆Rη(λ)‖F } in Theorem 5.18 for
obtaining

‖∆P (λ)‖F ≤ 2 d ‖∆L(λ)‖F (1 + ‖λM1 +M0‖F ) .

This ends the proof.
Finally, we discuss when Theorems 5.21 and 5.22 guarantee backward stability

of complete polynomial eigenproblems solved via the staircase or the QZ algorithms
applied to a block Kronecker pencil. We restrict the discussion to nondegenerate block
Kronecker pencils, since the obtained conclusions are also valid for the degenerate case.
According to our discussion at the beginning of Section 5, to equation (5.3), and to
Theorem 5.21, if

CP,L := 14 d5/2 ‖L(λ)‖F
‖P (λ)‖F

(1 + ‖λM1 +M0‖F + ‖λM1 +M0‖2F ) (5.44)

is a moderate number, then the backward stability is guaranteed. From (5.44), it is
clear that the following elementary lemma is useful for our discussion.

Lemma 5.23. Let P (λ) =
∑d
k=0 Pkλ

k ∈ F[λ]m×n and let L(λ) be an (ε, n, η,m)-
block Kronecker pencil with d = ε + η + 1 such that P (λ) = (Λη(λ)T ⊗ Im)(λM1 +
M0)(Λε(λ)⊗ In). Then:

(a)
‖L(λ)‖F
‖P (λ)‖F

=

√(
‖λM1 +M0‖F
‖P (λ)‖F

)2

+
2(nε+mη)

‖P (λ)‖2F
≥ 1√

2 d
.
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(b) ‖λM1 +M0‖F ≥ ‖P (λ)‖F /
√

2 d.
Proof. The equality in part (a) follows from (4.1) and Definition 2.14. The

inequality follows from (4.4), which implies, for k = 0, 1, . . . , d,

‖Pk‖F ≤
∑

i+j=d+2−k

‖[M1]ij‖F +
∑

i+j=d+1−k

‖[M0]ij‖F

≤
√

2d

√ ∑
i+j=d+2−k

‖[M1]ij‖2F +
∑

i+j=d+1−k

‖[M0]ij‖2F .

This in turn implies ‖P (λ)‖F ≤
√

2d ‖λM1 + M0‖F , which is the result in part (b),
and gives the inequality in part (a).

From (5.44) and Lemma 5.23(a), we see that if ‖P (λ)‖F � 1, then CP,L is huge,
since 2(nε + mη)/‖P (λ)‖2F is huge. Moreover, from (5.44) and Lemma 5.23(b), we
see that if ‖P (λ)‖F � 1, then CP,L is also huge, since ‖λM1 + M0‖F is huge and

‖L(λ)‖F /‖P (λ)‖F ≥ 1/
√

2 d. Therefore, one should scale P (λ) in advance in such a
way that ‖P (λ)‖F = 1 to have a chance of CP,L is moderate. But even in this case,
CP,L is large if ‖λM1 +M0‖F is large. This happens, for instance, in the last pencil
in Example 4.5 if the arbitrary matrices A and/or B have huge norms.

As a consequence of the discussion above and Theorems 5.21 and 5.22, we can state
the informal Corollary 5.24, which establishes sufficient conditions for the backward
stability of the solution of complete polynomial eigenproblems via block Kronecker
pencils (degenerate or not). For the sake of clarity and simplicity any nonessential
numerical constant is omitted in Corollary 5.24.

Corollary 5.24. Let P (λ) =
∑d
i=0 Piλ

i ∈ F[λ]m×n with ‖P (λ)‖F = 1. Let
L(λ) be an (ε, n, η,m)-block Kronecker pencil as in (4.1) with d = ε+ η+ 1 and such
that P (λ) = (Λη(λ)T ⊗Im)(λM1 +M0)(Λε(λ)⊗In). Let ∆L(λ) be any pencil with the
same size as L(λ) and with ‖∆L(λ)‖F sufficiently small. If ‖λM1+M0‖F ≈ ‖P (λ)‖F ,
then L(λ) + ∆L(λ) is a strong linearization of a matrix polynomial P (λ) + ∆P (λ)
with grade d and such that

‖∆P (λ)‖F
‖P (λ)‖F

. d3
√
m+ n

‖∆L(λ)‖F
‖L(λ)‖F

. (5.45)

In addition, the right minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by ε, and the left minimal indices of L(λ) + ∆L(λ) are those of P (λ) + ∆P (λ)
shifted by η. In particular, this corollary holds for all permuted Fiedler pencils pre-
sented in [25, Theorem 4.5], since for them ‖λM1 +M0‖F = ‖P (λ)‖F .

For limiting block Kronecker pencils, the bound (5.45) can be improved as follows:
the factor d3 can be replaced by d3/2, as a consequence of Theorem 5.22, and

√
m+ n

by
√
m if ε = 0 or by

√
n if η = 0, as a consequence of Lemma 5.23(a).

Remark 5.25. We emphasize that Corollary 5.24 can be applied also to non-
permuted Fiedler pencils, since the Frobenius norm is invariant under permutations
and permutations preserve strong linearizations and minimal indices. Therefore, given
a Fiedler pencil and a perturbation of it, we can permute both and transform the
corresponding perturbation problem into the problem we have solved in this section.

Remark 5.26. Consider that each block-entry of the (1, 1)-block λM1 + M0 of
the block Kronecker pencil L(λ) in Theorems 5.21 and 5.22, and in Corollary 5.24,
is a linear combination of the coefficients Pd, . . . , P0 of P (λ) and of some arbitrary
matrices satisfying (4.4). Then, the pencil L(λ) + ∆L(λ) in Theorems 5.21 and 5.22,
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and in Corollary 5.24, is strictly equivalent to a block Kronecker pencil L̂(λ) with
exactly the same structure as L(λ) but for the polynomial P (λ) + ∆P (λ) instead of
P (λ). This means that each block-entry of the (1, 1)-block of the block Kronecker

pencil L̂(λ) is obtained from the corresponding block-entry of the (1, 1)-block of L(λ)
by replacing Pj by Pj+∆Pj for j = 0, . . . , d. In particular, if L(λ) is a given permuted
Fiedler pencil of P (λ) (see [25, Theorem 4.5]), then L(λ)+∆L(λ) is strictly equivalent
to the same permuted Fiedler pencil of P (λ) + ∆P (λ). This result follows from the

fact that Theorem 4.4 guarantees that L̂(λ) has the same complete eigenstructure as
L(λ)+∆L(λ), and so both pencils must be strictly equivalent [33, Chapter XII]. This
remark by itself does not prove that the strict equivalence transformations connecting
L̂(λ) and L(λ) + ∆L(λ) are small perturbations of identity matrices, despite the fact

that L̂(λ) and L(λ) + ∆L(λ) are indeed very close each other. However, it is clear

that this remark opens the possibility of proving directly that L̂(λ) and L(λ)+∆L(λ)
are strictly equivalent via nonsingular matrices that are very close to the identity, as
it was done in [74] for the Frobenius companion linearizations.

6. Conclusions and future work. The new family of strong block minimal
bases pencils has been introduced and analyzed. We have proven in a simple and
general way that these pencils are always strong linearizations of matrix polynomials
and that their minimal indices and those of the polynomials satisfy constant uni-
form shifting relationships. These proofs are based on the properties of dual minimal
bases—classical tools in multivariable linear system theory that have been used re-
cently in different matrix polynomial eigenproblems. As an immediate corollary of
this general theory, we obtain that the same results hold for the subfamily of block
Kronecker pencils, which form a wide subclass of block minimal bases pencils easily
constructible from the coefficients of a given but general matrix polynomial (general
in the sense that it may be square or rectangular, regular or singular). The funda-
mental property that strong block minimal bases pencils are robust under arbitrary
perturbations that are sufficiently small and that preserve the (2, 2)-zero block allows
us to develop a rigorous global backward error analysis of complete polynomial eigen-
problems solved via block Kronecker pencils. The key point of the analysis is that
although perturbations of block Kronecker pencils destroy the delicate block Kro-
necker structure, they lead, after some manipulations, to strong block minimal bases
pencils with similar properties. The backward error bounds delivered by this analysis
enjoy a number of novel features not present so far in the literature as, for instance,
the fact that they are finite precise bounds instead of first order big-O bounds.

The results in this work have already motivated considerable research in the area.
For instance, they have clarified many of the results that have been published in the
last few years on linearizations of matrix polynomials, since it has been proved in
[10] that all generalized Fiedler linearizations [3, 8, 15], all Fiedler linearizations with
repetition [7, 11, 77], and all generalized Fiedler linearizations with repetition [9] may
be transformed through proper permutations into particular strong block minimal
bases pencils that can be described very easily; structured versions of the backward
error analysis in this paper have been developed for many classes of structured strong
block minimal bases linearizations of structured matrix polynomials in [26]; in [65]
particular block minimal bases linearizations have been used to compute efficiently and
in a stable way the zeros of a polynomial that is the sum of two polynomials expressed
in two different bases, as well as for solving other challenging numerical problems;
extensions of block Kronecker pencils that linearize matrix polynomials expressed in
Chebyshev bases have been developed in [52]; it has been shown that each strong
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block minimal bases pencil can be used to construct strong linearizations of rational
matrices with non-constant polynomial part [2]; etc. In addition to these publications,
several other ongoing research projects related to block minimal bases pencils are being
currently developed by different researchers. They include the extension of the error
analysis to other strong block minimal bases linearizations and the generalization of
the ideas presented in this work to the context of `-ifications of matrix polynomials
[17, 22].

Appendix A. The minimal bases of strong block minimal bases pen-
cils. In this appendix, we state and prove Lemma A.1, which establishes, first, the
relationship between the vectors in the rational right null spaces of any of the strong
block minimal bases pencils L(λ) introduced in Definition 3.1 and of the correspond-
ing matrix polynomial Q(λ) in (3.2), and, second, the relationship between the right
minimal bases of L(λ) and Q(λ). In this paper Lemma A.1 is only used in the proof of
Theorem 3.6, but we emphasize that is very useful for proving the recovery procedures
of eigenvectors and minimal bases of block Kronecker pencils in [25, Section 7] and
that is a fundamental result in the theory of strong block minimal bases linearizations.

Lemma A.1. Let L(λ) be a strong block minimal bases pencil as in (3.1), let N1(λ)
be a minimal basis dual to K1(λ), let N2(λ) be a minimal basis dual to K2(λ), let Q(λ)

be the matrix polynomial defined in (3.2), and let N̂2(λ) be the matrix appearing in
(3.3). Then the following hold:

(a) If h(λ) ∈ Nr(Q), then

z(λ) :=

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h(λ) ∈ Nr(L) . (A.1)

Moreover, if 0 6= h(λ) ∈ Nr(Q) is a vector polynomial, then z(λ) is also a
vector polynomial and

deg(z(λ)) = deg(N1(λ)T h(λ)) = deg(N1(λ)) + deg(h(λ)). (A.2)

(b) If {h1(λ), . . . , hp(λ)} is a right minimal basis of Q(λ), then{[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
h1(λ), . . . ,

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
hp(λ)

}
is a right minimal basis of L(λ).

Proof. (a) It can be checked, via a direct multiplication, that the matrix X(λ) in

(3.4) satisfies X(λ) = N̂2(λ)M(λ)N1(λ)T . Then, from (3.4), we get that

(U2(λ)−T ⊕ Im1
)L(λ) (U1(λ)−1 ⊕ Im2

)

 0
I

−X(λ)

 =

 0
Q(λ)

0

 ,
where the sizes of the identity and zero blocks are conformable with the partition of
the last matrix in (3.4). By using the structure of U1(λ)−1 ⊕ Im2

(recall (3.3)), the
multiplication of the last two factors in the left-hand side of the previous equation
leads to

(U2(λ)−T ⊕ Im1)L(λ)

[
N1(λ)T

−X(λ)

]
=

 0
Q(λ)

0

 . (A.3)
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This equation implies that z(λ) ∈ Nr(L) if h(λ) ∈ Nr(Q), and also that z(λ) is a
vector polynomial if h(λ) is, because N1(λ) and X(λ) are matrix polynomials.

It only remains to prove the degree shift property (A.2) to conclude the proof of
part (a). First, take into account that all the row degrees of the minimal basis N1(λ)
are equal and that its highest degree coefficient has full row rank. Therefore,

deg(N1(λ)T g(λ)) = deg(N1(λ)) + deg(g(λ)) , (A.4)

for any vector polynomial g(λ) 6= 0. The same argument applied to the minimal basis
K2(λ) proves that

deg(K2(λ)T y(λ)) = deg(K2(λ)) + deg(y(λ)) = 1 + deg(y(λ)) , (A.5)

for any vector polynomial y(λ) 6= 0. Next, observe that

deg(z(λ)) = max{deg(N1(λ)Th(λ)) , deg(X(λ)h(λ))} . (A.6)

Therefore (A.2) follows trivially if X(λ)h(λ) = 0. Finally, assume that X(λ)h(λ) 6= 0
and h(λ) ∈ Nr(Q). Then use L(λ)z(λ) = 0, and perform the multiplication corre-
sponding to the first block of L(λ)z(λ), using the expressions of z(λ) in (A.1) and
L(λ) in (3.1), to get

M(λ)N1(λ)Th(λ) = K2(λ)TX(λ)h(λ).

This equality implies, together with (A.5), that

1 + deg(X(λ)h(λ)) = deg(K2(λ)TX(λ)h(λ)) ≤ deg(M(λ)) + deg(N1(λ)Th(λ))

≤ 1 + deg(N1(λ)Th(λ)),

and, so, deg(X(λ)h(λ)) ≤ deg(N1(λ)Th(λ)). This inequality, together with (A.4) and
(A.6) thus prove (A.2).

(b) Let us consider the matrix product

B(λ) :=

[
N1(λ)T

−N̂2(λ)M(λ)N1(λ)T

]
[h1(λ) · · ·hp(λ)],

and let us prove that their columns are a minimal basis of the rational subspace
they span by applying a version of Theorem 2.2 for columns. Note that for all λ0 ∈
F, B(λ0) has full column rank since N1(λ0)T and [h1(λ0) · · ·hp(λ0)] have both full
column rank, since the columns of N1(λ)T and [h1(λ) · · ·hp(λ)] are minimal bases.
Next, observe that (A.2) implies that the highest column degree coefficient matrix
Bhc of B(λ) has as a submatrix the highest column degree coefficient matrix Chc of
C(λ) := N1(λ)T [h1(λ) · · ·hp(λ)]. Since the column degrees of N1(λ)T are all equal,
we have that Chc is the product of the highest column degree coefficient matrices of
N1(λ)T and [h1(λ) · · ·hp(λ)], which have both full column rank because the columns
of both matrices are minimal bases. So Chc has full column rank, as well as Bhc.
This implies that the columns of B(λ) are a minimal basis of a rational subspace
S. In addition, S ⊆ Nr(L(λ)) by part (a). Finally, note that S = Nr(L) because
dim(Nr(Q)) = dim(Nr(L)), since L(λ) is a strong linearization of Q(λ) by Theorem
3.3(b) and, then, Theorem 4.1 in [17] holds.

Appendix B. Proof of Lemma 5.4. In this appendix, we assume that ε 6= 0
and η 6= 0 according to Remark 5.1. We first reduce in Lemma B.1 the problem of
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computing σmin(T ) to the problem of computing the minimum singular value of a
matrix of size 2εη × (2εη + ε+ η), which is much smaller than the size of T .

Lemma B.1. Let T be the matrix defined in (5.13) and

T̂ :=

[
Iε ⊗ Eη Eε ⊗ Iη
Iε ⊗ Fη Fε ⊗ Iη

]
, (B.1)

where λFk − Ek := Lk(λ) is the pencil in (2.3). Then σmin(T ) = σmin(T̂ ).

Proof. Since the Kronecker product is associative [45, Chapter 4], we may write
the matrix T as

T =

[
Eη ⊗ Im ⊗ Iε ⊗ In Iη ⊗ Im ⊗ Eε ⊗ In
Fη ⊗ Im ⊗ Iε ⊗ In Iη ⊗ Im ⊗ Fε ⊗ In

]
=

[
(Eη ⊗ Im)⊗ Iε Iηm ⊗ Eε
(Fη ⊗ Im)⊗ Iε Iηm ⊗ Fε

]
⊗ In =: T̃ ⊗ In.

(B.2)

Thus, σmin(T ) = σmin(T̃ ) by [45, Theorem 4.2.15]. Following Van Loan [76], let us

perform a perfect shuffle on the matrix T̃ on the right of (B.2) to swap the order of
the Kronecker products of its blocks. That is, there exist permutation matrices S,
RT1 and RT2 of sizes εηm× εηm, ε(η + 1)m× ε(η + 1)m and (ε+ 1)ηm× (ε+ 1)ηm,
respectively, such that[

S
S

] [
(Eη ⊗ Im)⊗ Iε Iηm ⊗ Eε
(Fη ⊗ Im)⊗ Iε Iηm ⊗ Fε

] [
RT1

RT2

]
=

[
Iε ⊗ (Eη ⊗ Im) Eε ⊗ Iηm
Iε ⊗ (Fη ⊗ Im) Fε ⊗ Iηm

]
=

[
Iε ⊗ Eη Eε ⊗ Iη
Iε ⊗ Fη Fε ⊗ Iη

]
⊗ Im = T̂ ⊗ Im.

Using again [45, Theorem 4.2.15], we get σmin(T ) = σmin(T̃ ) = σmin(T̂ ).

Lemma B.2 reduces the problem of computing the minimum singular value of T̂
in (B.1) to compute the largest singular value of a matrix smaller than T̂ , essentially
with half its size, and with a simpler structure.

Lemma B.2. Let T̂ be the matrix in (B.1). Then

σmin(T̂ ) =
√

2− σmax(Wε,η) , (B.3)

where Wε,η = Iε⊗EηFTη +EεF
T
ε ⊗Iη ∈ Rεη×εη and σmax(Wε,η) denotes its maximum

singular value.

Proof. The singular values of T̂ are the square roots of the eigenvalues of

T̂ T̂T =

[
2Iεη Wε,η

WT
ε,η 2Iεη

]
= 2 I2εη +

[
0 Wε,η

WT
ε,η 0

]
,

where Wε,η = Iε ⊗EηFTη +EεF
T
ε ⊗ Iη. It is well known (see, for instance, [68, Theo-

rem I.4.2]) that the eigenvalues of [0 , Wε,η ; WT
ε,η , 0] are ±σ1(Wε,η), . . . ,±σεη(Wε,η),

where σ1(Wε,η) ≥ · · · ≥ σεη(Wε,η) are the singular values of Wε,η. Therefore, the

eigenvalues of T̂ T̂T are 2±σ1(Wε,η), . . . , 2±σεη(Wε,η), which implies the result. Ob-

serve that T̂ T̂T is positive semidefinite and, thus, its eigenvalues are nonnegative.
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The advantage of the matrix Wε,η is that has a bidiagonal block Toeplitz structure
with very simple blocks. This comes from the fact that

EkF
T
k =


0
1 0

1 0
. . .

. . .

1 0

 =: Jk ∈ Rk×k (with J1 := 01×1),

which implies

Wε,η = Iε ⊗ EηFTη + EεF
T
ε ⊗ Iη =


Jη
Iη Jη

Iη Jη
. . .

. . .

Iη Jη


︸ ︷︷ ︸

ε block columns

 ε block rows . (B.4)

This structure will allow us to compute explicitly the largest singular value of Wε,η.
Without loss of generality, we assume that ε ≥ η, since, otherwise, Wε,η is transformed
into Wη,ε with a perfect shuffle permutation , i.e., by interchanging the order of the
Kronecker products in the summands of Wε,η. In this situation, note that if η = 1,
then W1,1 = 01×1 and Wε,1 = Jε for ε > η = 1. Therefore,

σmax(W1,1) = 0 and σmax(Wε,1) = 1, if ε > η = 1. (B.5)

If η > 1, then σmax(Wε,η) can be computed with the help of Lemma B.3, where we
show that Wε,η is permutationally equivalent to a direct sum involving the following
two types of matrices

Mk :=


1 1

1 1
. . .

. . .

1 1
1

 ∈ Rk×k and Gk :=


1
1 1

. . .
. . .

1 1
1

 ∈ R(k+1)×k.

(B.6)
Lemma B.3. Let Wε,η be the matrix in (B.4), let Mk and Gk be the matrices in

(B.6), and assume that ε ≥ η. Then, there exist two permutation matrices P1 and P2

such that

P1Wε,ηP2 = (Mη ⊕Mη ⊕ · · · ⊕Mη)︸ ︷︷ ︸
ε−η times

⊕(Gη−1⊕GTη−1)⊕· · ·⊕ (G1⊕GT1 )⊕01×1. (B.7)

Proof. If η = 1, then the result follows trivially from the discussion in the two
lines above (B.5) with the convention G0 ⊕GT0 := 01×1. Therefore, we assume in the
rest of the proof that η > 1. Observe that the 01×1 block in (B.7) is a consequence of
the fact that the first row and the last column of Wε,η are both zero. Thus, permuting
the first row to the last row position produces the 01×1 block.

We first point out that every nonzero row or column of Wε,η contains only one or
two 1’s and if there are two 1’s, their indices differ exactly by η−1. We now construct
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the permutations P1 and P2 that yield (B.7). Let us use for this the MATLAB index
notation to indicate which permutations are “extracting” the different blocks of the
direct sum decomposition (B.7). It is easy to see that the 2 × 1 submatrix of Wε,η

with row indices (2, η + 1) and column index 1 yields G1 :

G1 = Wε,η(2 : η − 1 : η + 1, 1)

and this block is “decoupled” from the rest of the matrix Wε,η since the remaining
elements in the corresponding rows and column are zero. In a similar manner, one
extracts for i = 1, . . . , η − 1 the following (i+ 1)× i decoupled blocks

Gi = Wε,η(i+ 1 : η − 1 : iη + 1, i : η − 1 : (i− 1)η + 1), 1 ≤ i ≤ η − 1,

each starting from the element (i + 1, i) in the leading block Jη and ending at the
leading 1 of the block Iη at the (i + 1, i) block-entry. In a similar fashion one also
extracts for i = 1, . . . , η−1 the “transposed” matrices GTi backwards from the trailing
block Jη, i.e., each GTi starting from the element (η− i+ 1, η− i) in the trailing block
Jη and ending (backwards) at the trailing 1 of the block Iη at the (ε − i + 1, ε − i)
block-entry. In MATLAB index notation this amounts to

GTi = Wε,η(εη − i+ 1 : 1− η : (ε− i+ 1)η , εη − i : 1− η : (ε− i)η).

So far, we have “extracted” η − 1 trailing 1s of the η − 1 trailing blocks Iη. This
allows us to find the remaining (ε − η) blocks Mη in (B.7) as follows: each of them
starts from the trailing 1 in the block Iη at the (i+ 1, i) block-entry and ends at the
leading 1 of the block Iη at the (i + η, i + η − 1) block-entry. In MATLAB index
notation this amounts to

M (i)
η = Wε,η((i+1)η : η−1 : (η+i−1)η+1, iη : η−1 : (η+i−2)η+1), 1 ≤ i ≤ ε−η.

Finally, it is also easy to verify that the dimensions and the number of 1s of the
direct sum decomposition in the right-hand side of (B.7) match those of Wε,η. This
completes the proof.

Now, we are in the position of computing σmax(Wε,η).
Proposition B.4. Let Wε,η be the matrix in (B.4). Then

σmax(Wε,η) =

{
2 cos π

2 min{ε,η}+1 , if ε 6= η,

2 cos π
2η , if ε = η.

(B.8)

Proof. As explained after the equation (B.4), we may assume without loss of
generality that ε ≥ η. In addition, if η = 1, then the result follows immediately from
(B.5). Thus, the rest of the proof assumes ε ≥ η > 1.

Let us consider first the case ε = η > 1. Lemma B.3 implies that σmax(Wη,η) =
max{σmax(Gη−1), ..., σmax(G2), σmax(G1)}. In addition, since Gk is a submatrix of
Gk+1, we have that σmax(Gη−1) ≥ · · · ≥ σmax(G2) ≥ σmax(G1) [45, Corollary 3.1.3].
Therefore, σmax(Wη,η) = σmax(Gη−1). The singular values of Gη−1 are the square
roots of the eigenvalues of

GTη−1Gη−1 =



2 1
1 2 1

1
. . .

. . .

. . . 2 1
1 2

 ∈ R
(η−1)×(η−1),
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which are known at least from the 1940s [34, p. 111]. They are

λj = 2

(
1− cos

πj

η

)
, for j = 1, 2, . . . , η − 1.

Therefore the maximum of these eigenvalues is

λη−1 = 2

(
1− cos

π(η − 1)

η

)
= 2

(
1 + cos

π

η

)
= 4 cos2 π

2η
.

The result follows from σmax(Wη,η) = σmax(Gη−1) =
√
λη−1.

Next, we consider the case ε > η > 1. In this situation, Lemma B.3 implies
that σmax(Wε,η) = max{σmax(Mη), σmax(Gη−1), ..., σmax(G1)} = σmax(Mη), where
we have used again that Gk is a submatrix of Gk+1 and that Gη−1 is a submatrix of
Mη. The singular values of Mη are the square roots of the eigenvalues of MηM

T
η , i.e.,

the square roots of the roots of the characteristic equation

det(λI −MηM
T
η ) = det



(λ− 2) −1
−1 (λ− 2) −1

−1
. . .

. . .

. . . (λ− 2) −1
−1 (λ− 1)

 = 0.

With the change of variable λ = 2µ+ 2, the equation above becomes

det



2µ −1
−1 2µ −1

−1
. . .

. . .

. . . 2µ −1
−1 2µ+ 1

 = Uη(µ) + Uη−1(µ) = 0, (B.9)

where U`(µ) is the degree-` Chebyshev polynomial of the second kind [58]. The first
equality in (B.9) can be obtained directly from [48, eq. (11)] by applying the recur-
rence relation of the Chebyshev polynomials of the second kind2. Alternatively this
fact can also be easily established from results found in [39]. Observe that Gershgorin
Circle Theorem [38, Theorem 7.2.1] implies that the eigenvalues of MηM

T
η satisfy

0 ≤ λ ≤ 4. Therefore, the roots of (B.9) satisfy −1 ≤ µ ≤ 1. Moreover, we also
have that 1 and −1 are not roots of (B.9) since Uη(1) + Uη−1(1) = 2η + 1 6= 0 and
Uη(−1) +Uη−1(−1) = (−1)η 6= 0. Thus, the roots of (B.9) satisfy −1 < µ < 1. With
the change of variable µ = cos θ, we get the equation

Uη(µ) + Uη−1(µ) =
1

sin θ
(sin(η + 1)θ + sin ηθ) = 2

cos θ2
sin θ

sin
(2η + 1)θ

2
= 0,

whose roots are θj = 2πj/(2η + 1), j = 1, . . . , η in the interval 0 < θ < π. We finally
obtain that the eigenvalues of MηM

T
η are

λj = 2 + 2 cos
2jπ

2η + 1
, for j = 1, 2, . . . , η. (B.10)

2The reader should take into account that in [48] the characteristic polynomial is defined as
det(MηMT

η − λI) and the change of variable is slightly different.
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The largest one is λ1, which implies

σmax(Wε,η) = σmax(Mη) =

√
2 + 2 cos

2π

2η + 1
= 2 cos

π

2η + 1
.

Finally, Lemma 5.4 follows from combining Lemmas B.1 and B.2, Proposition B.4
and an elementary trigonometric identity. Observe that σmin(T ) 6= 0, which implies
that T has full row rank.

Appendix C. Proof of Theorem 5.14. Taking into account that Lε(λ) ⊗ In
and Λε(λ)T ⊗ In are dual minimal bases with all their row degrees equal, respectively,
to 1 and ε, part (a) is an immediate consequence of Theorem 5.12. Part (b) can also be
seen as a consequence of Theorem 5.13 (except the obvious equality C0(Λε(λ)T⊗In) =
I(ε+1)n), although it can be deduced directly because the matrices C0(Λε(λ)T ⊗ In)
and C1(Λε(λ)T ⊗ In) are very simple.

In order to prove part (c), we first note that Cε−1(Lε(λ)⊗In) = Cε−1(Lε(λ))⊗In
and Cε(Lε(λ) ⊗ In) = Cε(Lε(λ)) ⊗ In. So, it suffices to look at Cε−1(Lε(λ)) and
Cε(Lε(λ)). We then point out that there exist diagonal sign scalings, S1, S2, S3, S4,
(and hence orthogonal matrices) which get rid of all negative signs in Cε−1(Lε(λ))
and Cε(Lε(λ)), and that with the notation at the beginning of Section 5.1 lead to:

S1Cε−1(Lε(λ))S2 =: Ĉε−1(Lε(λ)) =


Fε

Eε
. . .

. . . Fε
Eε


︸ ︷︷ ︸
ε block columns

 ε+ 1 block rows ,

and

S3Cε(Lε(λ))S4 =: Ĉε(Lε(λ)) =


Fε

Eε
. . .

. . . Fε
Eε


︸ ︷︷ ︸

ε+ 1 block columns

 ε+ 2 block rows .

Clearly we can as well look at the singular values of the matrices Ĉε−1(Lε(λ))
and Ĉε(Lε(λ)) since they are orthogonally equivalent to Cε−1(Lε(λ)) and Cε(Lε(λ)),
respectively. We then show that there exist row and column permutations (and hence
orthogonal transformations) that put Ĉε−1(Lε(λ)) and Ĉε(Lε(λ)) in the following
block diagonal forms

P1Ĉε−1(Lε(λ))P2 = Mε ⊕MT
ε ⊕ · · · ⊕M1 ⊕MT

1 , (C.1)

P3Ĉε(Lε(λ))P4 = Mε ⊕MT
ε ⊕ · · · ⊕M1 ⊕MT

1 ⊕GTε , (C.2)

where Mk and Gk were defined in (B.6). Since a formal proof of (C.1) and (C.2) is
long, we simply sketch the main ideas. Notice that each of the matrices Ĉε−1(Lε(λ))
and Ĉε(Lε(λ)) have one or two 1’s in each column or row. Moreover, note that
Ĉε−1(Lε(λ)) has exactly 2ε columns with only one “1” and exactly 2ε rows with only
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one “1”, while Ĉε(Lε(λ)) has exactly 2(ε+1) columns with only one “1” and exactly 2ε
rows with only one “1”. Then, starting from the leading column in Ĉε−1(Lε(λ)) with
a single “1”, one can then reconstruct a staircase Mε and starting from its trailing
column with a single “1”, one can reconstruct a staircase MT

ε . The corresponding
index selection in Matlab notation for these two submatrices is:

Mε = Ĉε−1(Lε(λ))(ε+ 1 : ε+ 1 : ε2 + ε, 1 : ε+ 2 : ε2 + ε− 1),

MT
ε = Ĉε−1(Lε(λ))(1 : ε+ 1 : ε2, 2 : ε+ 2 : ε2 + ε).

After permuting these two blocks out of Ĉε−1(Lε(λ)) one continues in a similar way to
recover all other blocks Mk and MT

k , for k = ε− 1, . . . , 1. For the matrix Ĉε(Lε(λ)),
the procedure is similar, except that in the first step, one extracts

GTε = Ĉε(Lε(λ))(ε+ 1 : ε+ 1 : ε2 + ε, 1 : ε+ 2 : ε2 + 2ε+ 1)

starting from the “1” in the leading column. The rest of the extraction is similar to
the one for the matrix Ĉε−1(Lε(λ)).

So the smallest singular values of Ĉε−1(Lε(λ)) and Ĉε(Lε(λ)) are those of the
diagonal blocks with the smallest singular values. This turns out to be Mε for both
matrices, since the smallest singular value of the full-row rank matrix GTε = [Mε|eε]
is larger than that of Mε [45, Corollary 3.1.3] and, according to (B.10), σmin(Mε) <
σmin(Mε−1) < · · · < σmin(M1). The smallest singular value of Mε is the square root
of the smallest eigenvalue given in (B.10) :

σmin(Mε) =

√
2 + 2 cos

(
2επ

2ε+ 1

)
= 2 sin

(
π

4ε+ 2

)
.

The inequality 2 sin( π
4ε+2 ) ≥ 3

2ε+1 ≥
3

2(ε+1) follows then from the inequality sin(x) ≥
3x/π for 0 ≤ x ≤ π/6 since we assumed ε ≥ 1.

The proof of part (d) follows from the equality C0(Λε(λ)T ⊗ In) = I(ε+1)n and
the fact that an obvious column permutation P allows us to prove that C1(Λε(λ)T ⊗
In)P = In⊕ (Iεn⊗ [1, 1])⊕ In. Therefore, the singular values of C1(Λε(λ)T ⊗ In) are
1 (with multiplicity 2n) and

√
2 (with multiplicity εn).
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[26] F. M. Dopico, J. Pérez, and P. Van Dooren, Structured backward error analysis of linearized
structured polynomial eigenvalue problems, to appear in Math. Comp. (2018).

[27] B. Eastman and K. N. Vander Meulen, Pentadiagonal companion matrices, Spec. Matrices,
4 (2016), pp. 13–30.
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Anal. Appl., 37 (2016), pp. 1600–1624.
[64] , Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it

stable?, Math. Comp., 86 (2017), pp. 1741–1767.
[65] L. Robol, R. Vandebril, and P. Van Dooren, A framework for structured linearizations of

matrix polynomials in various bases, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 188–216.
[66] H. H. Rosenbrock, State-space and Multivariable Theory, Thomas Nelson & Sons, Ltd., Lon-

don, 1970.
[67] G. W. Stewart, On the sensitivity of the eigenvalue problem Ax = λBx, SIAM J. Numer.

Anal., 9 (1972), pp. 669–686.
[68] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Inc., Boston,

MA, 1990.
[69] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra

Appl., 309 (2000), pp. 339–361.
[70] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),

pp. 235–286.
[71] P. Van Dooren, The computation of Kronecker’s canonical form of a singular pencil, Linear

Algebra Appl., 27 (1979), pp. 103–140.
[72] P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans.

Aut. Contr., 26(1) (1981), pp. 111–129.
[73] P. Van Dooren, Deadbeat control, a special inverse eigenvalue problem, BIT, 24 (1984),

pp. 681–699.
[74] P. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix:

computational aspects, Linear Algebra Appl., 50 (1983), pp. 545–579.
[75] P. Van Dooren and F. M. Dopico, Robustness and perturbations of minimal bases, Linear

Algebra Appl., 542 (2018), pp. 246–281.
[76] C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000),

pp. 85–100.
[77] S. Vologiannidis and E. Antoniou, A permuted factors approach for the linearization of

polynomial matrices, Math. Control Signals Systems, 22 (2011), pp. 317–342.
[78] L. Zeng and Y. Su, A backward stable algorithm for quadratic eigenvalue problems, SIAM J.

Matrix Anal. Appl., 35 (2014), pp. 499–516.


