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Abstract. This work introduces a new perturbation bound for the L factor of the LDU factor-
ization of (row) diagonally dominant matrices computed via the column diagonal dominance pivoting
strategy. This strategy yields L and U factors which are always well-conditioned and, so, the LDU
factorization is guaranteed to be a rank-revealing decomposition. The new bound together with those
for the D and U factors in [Numer. Math., 119 (2011), 337-371] establish that if diagonally dominant
matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny
relative componentwise perturbations of these parameters produce tiny relative normwise variations
of L and U and tiny relative entrywise variations of D when column diagonal dominance pivoting is
used. These results will allow us to prove in a follow-up work that such perturbations also lead to
strong perturbation bounds for many other problems involving diagonally dominant matrices.
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1. Introduction. Perturbation analysis is a classical topic in matrix theory and
numerical linear algebra [23, 24, 35] which still attracts a lot of attention. In recent
years, considerable efforts have been devoted to derive sharper perturbation bounds
when structured perturbations of important classes of structured matrices are consid-
ered (see, as a sample, [1, 3, 4, 7, 12, 14, 18, 21, 22, 26, 27, 28, 29, 30, 31, 33, 34, 37,
38, 40]). In this paper, we present a new perturbation bound for the L factor of the
LDU factorization of diagonally dominant matrices under a class of componentwise
structure-preserving perturbations which are important in numerical computations
[14, 39, 40]. Here, A = LDU is an LDU factorization of A if L is a unit lower
triangular matrix, D is a diagonal matrix, and U is a unit upper triangular matrix.

This problem is motivated by several facts. First, apart from its classical appli-
cations [20], the LDU factorization has been applied recently to computing accurate
rank-revealing decompositions (RRD) [11] of many classes of structure matrices, which
are used to perform matrix computations with high relative accuracy [5, 11, 13, 15, 17].
In this context, an LDU factorization is an RRD if L and U are well-conditioned. A
key point on computing an LDU factorization as an RRD is that the standard partial
pivoting strategy does not produce in general well-conditioned factors L and U , and
that neither complete nor rook pivoting guarantees that L and U are well-conditioned,
although they often do in practice. Therefore, it may be necessary to consider other
special pivoting strategies that lead to LDU factorizations that are guaranteed to be
RRDs.

Another motivation for this work comes from the fact that the LDU factorization
may not be accurately computed in a forward stable manner in general. This follows
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Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain. E-mail:
dopico@math.uc3m.es. Research supported in part by Ministerio de Economı́a y Competitividad
of Spain under grant MTM2012-32542.
‡Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA. E-mail:

qiang.ye@uky.edu. Research supported in part by NSF under grant DMS-1318633.

1



2 M. Dailey, F. M. Dopico, and Q. Ye

from the perturbation theory of the LDU factorization, since the sharpest perturbation
bounds available in the literature [8, 9] show that large changes in the factors may
happen under tiny perturbations of the matrix in certain cases. In addition, although
complete and rook pivoting improve the sensitivity of the LDU factorization [6, 8],
extremely large variations of the factors are still possible. Therefore, backward stable
algorithms for the LDU factorization do not necessarily lead to accurate factors.

However, highly accurate matrix algorithms based on RRDs [5, 11, 13, 15, 17]
require an LDU factorization computed accurately in the following sense: L and U are
computed with tiny normwise relative errors and D is computed with tiny entrywise
relative errors. These strict requirements imply that accurate LDU factorizations
can be computed only for some special structured matrices via algorithms carefully
designed to exploit the corresponding structures (see [11, 15, 17]).

Diagonally dominant matrices arise in many applications and have many favor-
able properties [20, 24]. For brevity, we focus on row diagonally dominant matrices,
although the results we present hold for the column case by taking transposes. For
these matrices, the LDU factorization without pivoting satisfies that U is also row
diagonally dominant and, so, well-conditioned with κ∞(U) ≤ 2n [32]. In contrast,
L may not be well-conditioned, but if the factorization is computed with a pivot-
ing strategy introduced in [32, 39], then L is column diagonally dominant and, so,
well-conditioned with κ1(L) ≤ 2n [32]. This strategy is called here column diagonal
dominance pivoting and is specific for row diagonally dominant matrices. It guarantees
that the LDU factorizations are RRDs.

An accurate algorithm for computing the LDU factorization of row diagonally
dominant matrices has been developed recently in [39]. It works for any pivoting
strategy that preserves the diagonally dominant structure, and in particular, for col-
umn diagonal dominance pivoting. The accuracy follows from an error analysis based
on the perturbation theory for the LDU factorization of row diagonally dominant ma-
trices presented in [14]. However, the perturbation bound on L in [14] is guaranteed to
be small only if complete pivoting is used. Unfortunately, this pivoting strategy does
not guarantee that L is well-conditioned. Then, a fundamental question is whether or
not a strong perturbation bound for L still holds for the LDU factorization produced
by the column diagonal dominance pivoting.

This paper extends the results in [14] to prove a new perturbation bound for
L under the assumption that column diagonal dominance pivoting is used. This
together with the results in [14] demonstrates that a diagonally dominant matrix has
an LDU factorization that is an RRD and is stable under perturbation. Among other
applications, this bound is crucial in a separate work [10] that studies perturbation
properties of diagonally dominant matrices for many other linear algebra problems.

The strong perturbation results proved here and in [14] are based on parame-
terizing row diagonally dominant matrices by its off-diagonal entries and diagonally
dominant parts and on considering small relative componenwise perturbations of these
parameters. This parametrization was introduced in [39], used in [40] to derive relative
perturbation bounds for eigenvalues of positive semidefinite matrices, and recently has
led to strong perturbation bounds for many other problems [10].

The results in this paper and in [14] show that column diagonal dominance piv-
oting has two properties that make it optimal for row diagonally dominant matrices:
it computes an LDU factorization that is stable under perturbations of off-diagonal
entries and diagonally dominant parts and whose L and U factors are always well-
conditioned. As far as we know, no other pivoting strategy enjoys these two favorable
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properties.
The rest of this paper is organized as follows. In section 2, we give an overview

of diagonally dominant matrices and revise previous results that are needed in this
work. Section 3 presents the new perturbation bound for the L factor and its proof.
Finally, in section 4, conclusions and lines of future research are discussed. Before
proceeding, we present below the notation used in this paper.

Notation: In this paper we consider only real matrices and we denote by Rm×n
the set of m×n real matrices. The entries of a matrix A are aij and |A| is the matrix
with entries |aij |. The inequality A ≥ B for matrices means aij ≥ bij for all i, j, and
the inequality v ≥ w for vectors means vi ≥ wi for all i. Analogously, the inequality
v ≥ 0 for the vector v means vi ≥ 0 for all i. We use the MATLAB notation for
submatrices. That is, A(i : j, k : l) denotes the submatrix of A formed by rows i
through j and columns k through l. We use A(i′, j′) to denote the submatrix of A
formed by deleting row i and column j from A. Let α = [i1, i2, . . . , ip], where 1 ≤ i1 <
i2 < · · · < ip ≤ m, and β = [j1, j2, . . . , jq], where 1 ≤ j1 < j2 < · · · < jq ≤ n. Then
A(α, β) denotes the submatrix of A that consists of rows i1, i2, . . . , ip and columns
j1, j2, . . . , jq. In MATLAB notation, 1 : k denotes the row vector [1, 2, . . . , k]. For
convenience, we also use the notation 1 : k to denote the set {1, 2, . . . , k}. We denote
by Is the s×s identity matrix and by 0s the s×s zero matrix. Two matrix norms will
be used: ‖A‖1 = maxj

∑
i |aij | and ‖A‖∞ = maxi

∑
j |aij |. The condition numbers

of a nonsingular matrix A in any of these norms is denoted as κi(A) := ‖A‖i ‖A−1‖i,
for i = 1,∞. The sign of x ∈ R is sign(x), where sign(0) is defined to be 1.

2. Preliminaries. In this section, we give an overview of diagonally dominant
matrices and some of their properties. More information on this topic can be found
in [14, Sec. 2] and [24, 25].

Definition 2.1. A matrix A = [aij ] ∈ Rn×n is said to be row diagonally domi-
nant if |aii| ≥

∑
j 6=i |aij | for i = 1, . . . , n.

In the rest of the paper, all row diagonally dominant matrices A ∈ Rn×n that are
considered satisfy aii ≥ 0 for i = 1, . . . , n. This does not impose any restriction for
studying LDU factorizations, since we can multiply A by a diagonal matrix S with
diagonal entries equal to ±1 to get this property, and the LDU factorizations of A
and SA are trivially related each other.

An idea that has played a key role in deriving relative perturbation bounds and
high relative accuracy algorithms for row diagonally dominant matrices [39, 40, 14]
is to reparameterize these matrices in terms of their diagonally dominant parts and
off-diagonal entries as follows.

Definition 2.2. (1) Given a matrix M = [mij ] ∈ Rn×n and a vector v =
[vi] ∈ Rn, we use D(M,v) to denote the matrix A = [aij ] ∈ Rn×n whose off-diagonal
entries are the same as M (i.e., aij = mij for i 6= j) and whose ith diagonal entry is
aii = vi +

∑
j 6=i |mij | for i = 1, . . . , n.

(2) Given a matrix A = [aij ] ∈ Rn×n, we denote by AD ∈ Rn×n the matrix whose
off-diagonal entries are the same as A and whose diagonal entries are zero. Then,
letting vi = aii −

∑
j 6=i |aij |, for i = 1, . . . , n, and v = [v1, v2, . . . , vn]T ∈ Rn, we have

A = D(AD, v) (2.1)

and we call it the representation of A by its diagonally dominant parts v and off-
diagonal entries AD.

Observe that in the representation A = D(AD, v) ∈ Rn×n the condition v ≥ 0 is
equivalent to the statement that A is row diagonally dominant and has nonnegative
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diagonal entries. We emphasize that the condition v ≥ 0 will be used as an assumption
in most of the results in section 3 and, so, the reader should bear in mind its underlying
meaning.

Theorem 2.3 lists some basic properties of diagonally dominant matrices that are
often used in this work; see, e.g., [14, Theorem 1].

Theorem 2.3. If A ∈ Rn×n is row diagonally dominant, then
(a) Every principal submatrix of A is row diagonally dominant;
(b) PAPT is row diagonally dominant for any permutation matrix P ∈ Rn×n;
(c) If a11 6= 0 then the Schur complement of a11 in A is row diagonally dominant;
(d) If detA 6= 0 then detA has the same sign as the product a11a22 · · · ann; and
(e) |detA(i′, i′)| ≥ |detA(i′, j′)|, for all i = 1, . . . , n and for all j 6= i, where we

recall that A(i′, j′) denotes the submatrix of A formed by deleting row i and
column j of A.

Diagonally dominant matrices have several other nice properties that are useful.
For instance, strictly row diagonally dominant matrices (i.e., row diagonally dom-
inant matrices as defined in Definition 2.1 with strict inequalities) are nonsingular
and Gaussian elimination can be performed on them without interchanging rows or
columns. This implies that any strictly row diagonally dominant matrix A has a
unique LDU factorization. A general row diagonally dominant matrix A may be rank
deficient, and in this case A may not have an LDU factorization. However, applying
any diagonal pivoting strategy (i.e., pivoting with simultaneous and equal row and col-
umn permutations) to A always leads to a matrix PAPT that has LDU factorization,
PAPT = LDU , where P is the permutation matrix defined by the pivoting strategy.
If A is rank deficient, then D has diagonal entries that are zero and L and U may not
be unique, even when P is fixed. We then consider the following unique form of the
LDU factorization.

Definition 2.4. [14, Definition 1] A row diagonally dominant matrix A ∈ Rn×n
with rank r is said to have LDU factorization if there exist a unit lower triangular
matrix L11 ∈ Rr×r, a unit upper triangular matrix U11 ∈ Rr×r, and a nonsingular
diagonal matrix D11 ∈ Rr×r such that A = LDU where

L =

[
L11 0
L21 In−r

]
, D =

[
D11 0

0 0n−r

]
, U =

[
U11 U12

0 In−r

]
.

Throughout the paper, the LDU factorization refers to the one as defined above.
The nontrivial entries of the L, D, and U factors in Definition 2.4 can be expressed
in terms of minors of A. This is a classical result that we recall in Theorem 2.5,
since it is fundamental in section 3, where the new perturbation bounds for the LDU
factorization are obtained via detailed perturbation properties of the minors of A.

Theorem 2.5. [19, p. 35] If A ∈ Rn×n has rank r and has LDU factorization
as in Definition 2.4, then this factorization is unique and the nontrivial entries of
L = [lij ], D = diag[d1, . . . , dr, 0, . . . , 0], and U = [uij ] are given by

lij =
detA([1 : j − 1, i], 1 : j)

detA(1 : j, 1 : j)
, i > j and j = 1, . . . , r, (2.2)

di =
detA(1 : i, 1 : i)

detA(1 : i− 1, 1 : i− 1)
, i = 1, . . . , r, (2.3)

uij =
detA(1 : i, [1 : i− 1, j])

detA(1 : i, 1 : i)
, i < j and i = 1, . . . , r, (2.4)
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where we define detA(1 : 0, 1 : 0) := 1.
Next, we revise two particular diagonal pivoting strategies which are used to

compute via Gaussian elimination LDU factorizations of a row diagonally dominant
matrix A that are RRDs, i.e., with both factors L and U well conditioned. First, recall
that any diagonal pivoting strategy applied on A leads to a factor U that is also row
diagonally dominant and, therefore, well-conditioned [32]. At each stage of Gaussian
elimination with complete diagonal pivoting, the same row and column are exchanged
to place in the pivot position the diagonal entry with the largest absolute value of the
corresponding Schur complement. Observe that for row diagonally dominant matrices,
complete diagonal pivoting coincides with standard complete pivoting but, despite
this fact, it does not lead to an LDU factorization that is guaranteed to be an RRD,
although in practice, the computed factor L is almost always well-conditioned. The
column diagonal dominance pivoting strategy mentioned in §1 is much less known than
complete diagonal pivoting, but applied on A computes a factor L which is column
diagonally dominant and, hence, is always well-conditioned [32]. Some additional
notation is needed to introduce such pivoting strategy.

In general, consider applying Gaussian elimination with a diagonal pivoting strat-
egy to a row diagonally dominant matrix A ∈ Rn×n with nonnegative diagonal entries.
We assume that A is arranged for that diagonal pivoting strategy, which means that
the permutation defined by the pivoting is applied to A in advance. In each stage
Gaussian elimination makes zero all the entries below the diagonal of a certain column.

Define A(1) := A and define A(k+1) := [a
(k+1)
ij ] ∈ Rn×n to be the matrix obtained after

k stages of Gaussian elimination have been performed. So, all the entries below the di-
agonal in the first k columns of A(k+1) are equal to zero, A(k+1)(1 : k, :) = A(k)(1 : k, :),
and, in addition, the following identity presented in [19] can be easily proved from
properties of determinants:

a
(k+1)
ij =

detA([1 : k, i], [1 : k, j])

detA(1 : k, 1 : k)
(2.5)

for k + 1 ≤ i, j ≤ n and 1 ≤ k ≤ min{r, n − 1}, where r = rank(A). It follows
from Theorem 2.3-(c) that A(k+1) is row diagonally dominant and that A(k+1)(k+ 1 :
n, k+ 1 : n) is also row diagonally dominant, and from Theorem 2.3-(a)-(d) and (2.5)
that A(k+1) has nonnegative diagonal entries. Thus, Gaussian elimination applied
on A generates a sequence of row diagonally dominant matrices with nonnegative
diagonal entries A(k) ∈ Rn×n, k = 1, 2, . . . ,min{n, r + 1}, such that A(k)(k : n, k : n)
is also row diagonally dominant. Observe that this implies that there is at least one

column of A(k)(k : n, k : n) that is diagonally dominant, i.e., a
(k)
ii −

n∑
j=k,j 6=i

|a(k)ji | ≥ 0 for

some i = k, . . . , n. Then, the column diagonal dominance pivoting strategy arranges
A in such a way that

a
(k)
kk = max

k≤i≤n

a(k)ii : a
(k)
ii −

n∑
j=k,j 6=i

|a(k)ji | ≥ 0

 , (2.6)

for k = 1, . . . , r. This pivoting strategy was suggested in [32] for matrices with other
structures and used for the first time in [39] for general row diagonally dominant
matrices. It is immediate to see that column diagonal dominance pivoting produces
a column diagonally dominant factor L. Algorithmically, the column diagonal dom-
inance pivoting is implemented by exchanging, before performing the k-th stage of
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Gaussian elimination, the same row and column to place in the pivot position (k, k)
the maximal diagonal entry which is column diagonally dominant to get (2.6). At
the end, we obtain a row diagonally dominant factor U as usual and, in addition, a
column diagonally dominant factor L. Hence, by [32], the condition numbers of L
and U can be bounded as

κ∞(L) ≤ n2, κ∞(U) ≤ 2n, κ1(L) ≤ 2n, κ1(U) ≤ n2 . (2.7)

So, the LDU factorization of A arranged with the column diagonal dominance pivoting
strategy is always an RRD.

3. A new perturbation bound for the LDU factorization of diagonally
dominant matrices. The perturbation bounds available in the literature for the LU
and LDU factorizations of general matrices [2, 8, 9, 16, 36] do not guarantee small
entrywise error bounds for the D factor, which is essential in computing the LDU
factorization as an accurate RRD. Even for the L and U factors, the sharpest bounds
available [8, 9] give only conditional stability. These results, however, appear to be
the best one can get for general matrices.

For any row diagonally dominant matrix A, a stronger perturbation theory for
its LDU factorization has been presented in [14] and has been successfully used to
prove rigorously that the algorithm in [39] with complete diagonal pivoting computes
an accurate LDU factorization of A. The key components of this theory are to use as
parameters the diagonally dominant parts and the off-diagonal entries of A introduced
in Definition 2.2 and equation (2.1), and to preserve the diagonally dominant structure
for getting perturbation bounds which are independent of any condition number and
are always tiny for tiny perturbations. For completeness, we state as follows the main
perturbation result in [14], with slightly simplified bounds.

Theorem 3.1. [14, Theorem 3] Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0.
Suppose A has LDU factorization A = LDU (as in Definition 2.4) with L = [lij ] ∈
Rn×n, D = diag[d1, . . . , dn] ∈ Rn×n, and U = [uij ] ∈ Rn×n. Let Ã = D(ÃD, ṽ) ∈
Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1

2n
. (3.1)

Then Ã has LDU factorization Ã = L̃D̃Ũ with L̃ = [l̃ij ], D̃ = diag[d̃1, . . . , d̃n], and

Ũ = [ũij ] and the factors L̃, D̃, and Ũ satisfy,
(a) for i = 1, . . . , n,

|d̃i − di| ≤
2nε

1− 2nε
di ;

(b) for 1 ≤ i < j ≤ n,

|ũij − uij | ≤ 3nε, and
‖Ũ − U‖∞
‖U‖∞

≤ 3n2ε;

(c) and, if A is arranged for complete diagonal pivoting, for n ≥ i > j ≥ 1,

|l̃ij − lij | ≤
3nε

1− 2nε
, and

‖L̃− L‖∞
‖L‖∞

≤ 3n2ε

1− 2nε
.
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Observe that the assumptions v ≥ 0 and 0 ≤ ε < 1/(2n) < 1 in Theorem 3.1 imply
ṽ ≥ 0, and, so, Ã is row diagonally dominant with nonnegative diagonal entries. In
plain words, this means that the perturbations of A considered in (3.1) preserve the
diagonally dominant structure. It is interesting to remark that the original statements
of parts (a) and (b) of Theorem 3.1 presented in [14] remain valid under the wider
assumption 0 ≤ ε < 1 at the cost of somewhat more complicated statements that
express d̃i as a multiplicative perturbation of di.

The perturbation bounds for D and U in Theorem 3.1 hold in general, but the
bound on L only holds if the matrix A is arranged for complete diagonal pivoting.
This is a critical assumption for the proof of part (c) in Theorem 3.1. Indeed, [14]
provides an example where the perturbation of L may be of order 1 for very small ε if
the complete diagonal pivoting strategy is not used. As discussed in Sections 1 and 2,
the complete diagonal pivoting strategy, although useful for almost all matrices, does
not guarantee a well-conditioned factor L and, therefore, it does not compute an LDU
factorization which is guaranteed to be an RRD. It is then essential to demonstrate
that a rank-revealing LDU factorization such as the one produced by the column
diagonal dominance pivoting strategy is stable under the structured perturbations
considered in Theorem 3.1. The present paper proves precisely this, by showing that
a normwise perturbation bound on L similar to that in Theorem 3.1(c) holds when
column diagonal dominance pivoting is used. This is the main result in this paper
and is stated in Theorem 3.2.

Theorem 3.2. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. Suppose that A
is arranged for column diagonal dominance pivoting and let A = LDU be the LDU
factorization (as in Definition 2.4). Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1

12n+ 1
. (3.2)

Then Ã has LDU factorization Ã = L̃D̃Ũ , parts (a) and (b) of Theorem 3.1 hold,
and, in addition,

‖L̃− L‖1 ≤
2n (4n− 1) ε

1− (12n+ 1) ε
. (3.3)

Observe that ‖L‖1 ≥ 1 and, as a consequence, the absolute normwise bound
in (3.3) immediately implies that the same bound holds for the relative variation
‖L̃ − L‖1/‖L‖1. The assumption 0 ≤ ε < 1/(12n + 1) in Theorem 3.2 implies that
the bound in (3.3) is well-defined.

Example 3.3. This example illustrates that column diagonal dominance pivot-
ing is essential to guarantee, simultaneously, a good behavior of the factor L under
structured perturbations of type (3.2) and the column diagonal dominance of L. The
entries of all L, D, and U factors displayed in this example are the exact values of
the corresponding factors. Consider, first, the LDU factorization of the following row
diagonally dominant matrix A
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A =


1000 100 500 100

0 0.1 0.05 0
100 10 120 0
0 0 69.96 69.97



=


1
0 1

0.1 0 1
0 0 69.96

70 1




1000
0.1

70
55975
700




1 0.1 0.5 0.1
1 0.5 0

1 −1
7
1


and note that the vector of diagonally dominant parts of A is v(A) = [300, 0.05, 10, 0.01].
Now consider the LDU factorization of the row diagonally dominant matrix Ã = L̃D̃Ũ .

Ã =


1000 101 500 100

0 0.1 0.05 0
100 10 120 0
0 0 69.96 69.97



=


1
0 1

0.1 −1 1
0 0 69.96

70.05 1




1000
0.1

70.05
56009985
700500




1 0.101 0.5 0.1
1 0.5 0

1 −10
70.05

1

 ,
whose diagonally dominant parts are v(Ã) = [299, 0.05, 10, 0.01]. Note that A and Ã
satisfy (3.2) with ε = 10−2, but that their L factors are very different since |l̃32−l32| =
1. In contrast, the componentwise relative difference of the D factors is smaller than
10−2, and the normwise difference of the U factors is also smaller than 10−2 in the
∞-norm, which is in accordance with parts (a) and (b) of Theorem 3.1.

Suppose P is the permutation matrix such that PAPT is arranged for complete
diagonal pivoting, then we have

PAPT =


1000 500 100 100
100 120 0 10
0 69.96 69.97 0
0 0.05 0 0.1



=


1

0.1 1
0 69.96

70 1

0 0.05
70

1
11195 1




1000
70

55975
700

0.1




1 0.5 0.1 0.1
1 −1

7 0
1 0

1


and

PÃPT =


1000 500 100 101
100 120 0 10
0 69.96 69.97 0
0 0.05 0 0.1



=


1

0.1 1

0 69.96
70 1

0 0.05
70

1
11195 1




1000

70

55975
700

1120.1997
11195




1 0.5 0.1 0.101

1 −1
7

−1
700

1 69.96
55975

1

 ,
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where
1120.1997

11195
≈ 0.10006. Observe that the L factors of PAPT and PÃPT are

identical, the componentwise relative difference of the D factors is smaller than 10−2,
and the normwise difference of the U factors is also smaller than 10−2 in the∞-norm.
This is in accordance with Theorem 3.1. However, observe that the L factor of PAPT

is not column diagonally dominant.
We can obtain a column diagonally dominant factor L by using column diagonal

dominance pivoting instead. For instance, suppose P1 is the permutation matrix such
that P1AP

T
1 is arranged for column diagonal dominance pivoting. Then,

P1AP
T
1 =


1000 100 500 100

0 69.97 69.96 0
100 0 120 10
0 0 0.05 0.1



=


1
0 1

0.1 −10
69.97 1

0 0 34.985
55975 1




1000
69.97

559750
6997

.1




1 0.1 0.5 0.1
1 69.96

69.97 0
1 0

1


and

P1ÃP
T
1 =


1000 100 500 101

0 69.97 69.96 0
100 0 120 10
0 0 0.05 0.1



=


1
0 1

0.1 −10
69.97 1

0 0 34.985
55975 1




1000
69.97

559750
6997

1120.1997
11195




1 0.1 0.5 0.101
1 69.96

69.97 0
1 −69.97

55975
1

 .
Observe that the L factors of P1AP

T
1 and P1ÃP

T
1 are identical, the componentwise

relative difference of the D factors is smaller than 10−2, and the normwise difference
of the U factors is also smaller than 10−2 in the ∞-norm. This is in accordance with
Theorem 3.2. In addition, the L factor of P1AP

T
1 is now column diagonally dominant.

We emphasize that this example shows how subtle is the dependence of the per-
turbation properties of the factor L on the pivoting strategy: observe that the L factor
of the unpivoted matrix A is also column diagonally dominant and that its D and U
factors are very stable under perturbations of type (3.2). However, despite of these
favorable properties, the L factor of A is very sensitive. Finally, note also that in
this example all of the L factors of A, PAPT , and P1AP

T
1 are well-conditioned, since

their condition numbers in the 1-norm are approximately equal to 4, 4, and 1.3, re-
spectively.

The rest of this section is devoted to proving Theorem 3.2. Clearly, as a conse-
quence of Theorem 3.1, we only need to prove (3.3), but this requires considerable
efforts and the development of several auxiliary technical lemmas in advance. These
lemmas may be also of interest for other purposes, and are presented in Section 3.1
together with the proof of Theorem 3.2.

3.1. Auxiliary lemmas and proof of Theorem 3.2. The proofs of Theorem
3.1 in [14] and our Theorem 3.2 hinge on Theorem 2.5 and several results for deter-
minants and minors of row diagonally dominant matrices that were proved in [14].
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Given a matrix A ∈ Rn×n, the following will be used to denote some of its minors

g(k+1)
pq := detA([1 : k, p ], [1 : k, q]), (3.4)

for 1 ≤ k ≤ n− 1 and k + 1 ≤ p, q ≤ n. Note that all of the determinants appearing
in Theorem 2.5 and equation (2.5) are particular cases of the determinants defined in
(3.4) and in particular, the entries of L can be expressed as

lij =
g
(j)
ij

g
(j)
jj

, where i ≥ j. (3.5)

Then, the proof of Part (c) of Theorem 3.1 in [14] is based on perturbation bounds

first established for minors g
(j)
ij . Under perturbations of type (3.2), the variation of

principal minors g
(j)
ii is small relative to itself but for the non-principal minors g

(j)
ij

(with i 6= j), the variation can only be bounded to be small relative to g
(j)
ii . Applying

the perturbation bounds for minors to (3.5) leads to a perturbation bound for lij that
is small relative to

g
(j)
ii

g
(j)
jj

=
g
(j)
ii /g

(j−1)
j−1,j−1

g
(j)
jj /g

(j−1)
j−1,j−1

=
a
(j)
ii

a
(j)
jj

,

where the second equality follows from (2.5). The absolute value of this term is
bounded by 1 with the complete pivoting strategy but may be arbitrarily large with
the column diagonal dominance pivoting strategy. To prove the stronger bound of
Theorem 3.2, we shall prove in Lemma 3.11 that the variation of the non-principal

minors g
(j)
ij is small relative to

(
v
(j)
i +

∣∣∣a(j)ij ∣∣∣) g(j−1)j−1,j−1. Then, the perturbation of lij

is small relative to
(
v
(j)
i +

∣∣∣a(j)ij ∣∣∣) /a(j)jj , which will be proved in Lemma 3.12 to be

bounded by n− j for the column diagonal dominance pivoting strategy. Thus, lij and
hence L have a small perturbation bound as shown in Theorem 3.2.

The proof of Lemma 3.11 on the strong perturbation bound for the non-principal

minors g
(j)
ij turns out to be difficult. While we shall follow an approach similar to

[14] in dealing with variations of minors, the proof involves a judicious construction
of an auxiliary matrix and its corresponding perturbation that no longer satisfies the
standard perturbation condition (3.2). As a result, we need to consider auxiliary
perturbations that are more general than those in (3.2). More precisely, for a fixed p,
the p-th column of A will be perturbed in the particular way appearing in (3.7), which
corresponds to larger perturbations than those in (3.2) for the off-diagonal entries in
the p-th column. Specifically, we consider matrices A = [aij ] = D(AD, v) ∈ Rn×n,

with v ≥ 0, and Ã = [ãij ] = D(ÃD, ṽ) ∈ Rn×n that satisfy, for 0 ≤ ε < 1,

|ṽ − v| ≤ εv, (3.6)

|ãip − aip| ≤ ε (vi + |aip|), for i ∈ {1 : n}\{p}, and (3.7)

|ãij − aij | ≤ ε |aij |, for i 6= j, i ∈ {1 : n}, j ∈ {1 : n}\{p} . (3.8)

This generalized perturbation can be equivalently expressed as

ṽi = vi(1 + φi), with |φi| ≤ ε, for i ∈ {1 : n}, (3.9)

ãip = aip(1 + φ′ip)+ φip vi, with |φip| ≤ ε, φ′ip= φipsign(aip), for i∈{1 : n}\{p},(3.10)

ãij = aij(1 + φij), with |φij | ≤ ε, for i 6= j, i ∈ {1 : n}, j ∈ {1 : n}\{p} . (3.11)
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Observe that from (3.6), we obtain again that ṽ ≥ 0 holds and, so, this generalized
perturbation also preserves the row diagonally dominant structure, as well as the
nonnegativity of the diagonal entries.

We note that in the first part of this section the perturbation parameter ε can be
considered to satisfy 0 ≤ ε < 1 and A can be any row diagonally dominant matrix.
Only at the end of this section it will be imposed that A is arranged for column
diagonal dominance pivoting.

Before presenting new results, we state for completeness some identities and in-
equalities from [14] concerning determinants and minors of diagonally dominant ma-
trices.

Lemma 3.4. [14, Lemma 1] Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0.
Denote the algebraic cofactors of A by Cij := (−1)i+j detA(i′, j′), 1 ≤ i, j ≤ n. Then

detA = viCii +
∑
j 6=i

(|aij |Cii + aijCij), i = 1, . . . , n ,

with viCii ≥ 0 and |aij |Cii + aijCij ≥ 0 for j 6= i.

Lemma 3.5. [14, Lemma 6] Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. For
k = 1, . . . , n − 2, p 6= q, and k + 1 ≤ p, q ≤ n, let Gij be the algebraic cofactor of
A([1 : k, p ], [1 : k, q]) for the entry aij. Then the minors defined in (3.4) satisfy

g(k+1)
pq = ap1Gp1 + · · ·+ apkGpk + apqGpq , (3.12)

2g(k+1)
pp ≥ |ap1Gp1|+ · · ·+ |apkGpk|+ |apqGpq| , (3.13)

and, for 1 ≤ i ≤ k,

g(k+1)
pq =

vi +
∑

j /∈{1,...,k,q}

|aij |

Gii +
∑

j∈{1,...,k,q}\{i}

(aijGij + |aij |Gii) ,(3.14)

2g(k+1)
pp ≥

vi +
∑

j /∈{1,...,k,q}

|aij |

 |Gii|+ ∑
j∈{1,...,k,q}\{i}

|aijGij + |aij |Gii| .(3.15)

Our first lemma generalizes [14, Lemma 3] by replacing the standard perturbation
condition (3.2) with the generalized perturbation conditions defined in (3.6)-(3.7)-
(3.8).

Lemma 3.6. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(ÃD, ṽ) ∈ Rn×n satisfy (3.6)-(3.7)-(3.8) with 0 ≤ ε < 1. Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i]) ∈
Rn×n is a matrix that differs from A in only the ith row and whose ith row is the
same as the ith row of Ã. Then

det Ã[i] = (detA)(1 + ηi), where |ηi| ≤ 3 ε. (3.16)

Proof. Let A = [ajk], v = [vj ], Ã = [ãjk], and ṽ = [ṽj ]. We consider the

cofactor expansion of det Ã[i] across row i. Let C̃ij be the algebraic cofactor of Ã[i]

corresponding to ã
[i]
ij and Cij be the algebraic cofactor of A corresponding to aij .

Then, C̃ij = Cij . We need to discuss two cases separately.
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Case 1: i = p. By Lemma 3.4, we have

det Ã[p] = ṽpC̃pp +
∑
j 6=p

(|ãpj |C̃pp + ãpjC̃pj) = ṽpCpp +
∑
j 6=p

(|ãpj |Cpp + ãpjCpj)

and a similar equation for detA. Lemma 3.4 further implies that vpCpp ≥ 0 and
|apj |Cpp + apjCpj ≥ 0. Using (3.9) and (3.11), we obtain

det Ã[p] = detA+ φpvpCpp +
∑
j 6=p

φpj(|apj |Cpp + apjCpj).

It follows that

|det Ã[p] − detA| ≤ |φp|vpCpp +
∑
j 6=p

|φpj |(|apj |Cpp + apjCpj)

≤ εvpCpp +
∑
j 6=p

ε(|apj |Cpp + apjCpj)

= ε detA,

which proves the lemma for this case.
Case 2: i 6= p. We again use Lemma 3.4, (3.9), (3.10), and (3.11) to obtain

det Ã[i] = ṽiC̃ii +
∑
j 6=i

(|ãij |C̃ii + ãijC̃ij)

= ṽiCii + |ãip|Cii + ãipCip +
∑
j 6=i,p

(|ãij |Cii + ãijCij)

= viCii + viφiCii + |ãip|Cii + aipCip + aipφ
′
ipCip + φipviCip

+
∑
j 6=i,p

(|aij |Cii + aijCij) +
∑
j 6=i,p

φij (|aij |Cii + aijCij) . (3.17)

From (3.10), we have

|aip|(1 + φ′ip)− εvi ≤ |ãip| ≤ |aip|(1 + φ′ip) + εvi , (3.18)

and hence, from (3.17), Lemma 3.4, and |Cip| ≤ Cii (see Theorem 2.3(e)),

det Ã[i] ≥ viCii + viφiCii + |aip|Cii + |aip|φ′ipCii − εviCii + aipCip + aipφ
′
ipCip

+φipviCip +
∑
j 6=i,p

(|aij |Cii + aijCij) +
∑
j 6=i,p

φij (|aij |Cii + aijCij)

= detA+ φiviCii + φ′ip(|aip|Cii + aipCip)− εviCii + φipviCip

+
∑
j 6=i,p

φij (|aij |Cii + aijCij)

≥ detA− εviCii − ε(|aip|Cii + aipCip)− εviCii − εviCii
−ε

∑
j 6=i,p

(|aij |Cii + aijCij)

= detA− 3εviCii − ε
∑
j 6=i

(|aij |Cii + aijCij)

≥ detA− 3ε detA .
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Similarly,

det Ã[i] ≤ viCii + viφiCii + |aip|Cii + |aip|φ′ipCii + εviCii + aipCip + aipφ
′
ipCip

+φipviCip +
∑
j 6=i,p

(|aij |Cii + aijCij) +
∑
j 6=i,p

φij (|aij |Cii + aijCij)

≤ detA+ εviCii + ε(|aip|Cii + aipCip) + εviCii + εvi|Cip|

+ε
∑
j 6=i,p

(|aij |Cii + aijCij)

≤ detA+ 3εviCii + ε
∑
j 6=i

(|aij |Cii + aijCij)

≤ detA+ 3εdetA.

Thus,

|det Ã[i] − detA| ≤ 3εdetA ,

which proves the lemma.
Lemma 3.7 below uses Lemma 3.6 to present a similar perturbation bound for the

principal minors of a row diagonally dominant matrix under the structured perturba-
tions defined in (3.6)-(3.7)-(3.8). It generalizes [14, Lemma 4] which has to assume
the standard perturbation condition (3.2).

Lemma 3.7. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(ÃD, ṽ) ∈ Rn×n satisfy (3.6)-(3.7)-(3.8) with 0 ≤ ε < 1/2. Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i])
∈ Rn×n is a matrix that differs from A in only the ith row and whose ith row is the
same as the ith row of Ã. Let 1 ≤ i1 < i2 < · · · < iq ≤ n and α = {i1, i2, . . . , iq}, and
recall that A(α, α) denotes the principal submatrix of A that lies in rows and columns
indexed by α. Then

det Ã[i](α, α) =

{
detA(α, α) , if i /∈ α ,
(detA(α, α))(1 + δ

(α)
i ) , if i ∈ α ,

(3.19)

where |δ(α)i | ≤ 6ε if p /∈ α and |δ(α)i | ≤ 3ε if p ∈ α. Furthermore,

det Ã(α, α) = (detA(α, α))(1 + η
(α)
1 ) · · · (1 + η(α)q ) , (3.20)

where |η(α)k | ≤ 6ε if p /∈ α and |η(α)k | ≤ 3ε if p ∈ α, for k = 1, . . . , q.
Proof. We prove first (3.19). Assume i ∈ α, otherwise the result is trivial. Since

A = [ajk] and Ã[i] = [ã
[i]
jk] are row diagonally dominant with nonnegative diagonal

entries, then so are A(α, α) and Ã[i](α, α). Hence, we can parameterize them in terms
of their diagonally dominant parts and off-diagonal entries. Let

A(α, α) = D(AD(α, α), w) and Ã[i](α, α) = D(Ã
[i]
D (α, α), w̃[i]) ,

where w = [wj ], w̃
[i] = [w̃

[i]
j ] ∈ Rq. For simplicity, the entries and diagonally dominant

parts of A(α, α) and Ã[i](α, α) are indexed with the indices i1, i2, . . . , iq in α. Let

v = [vj ] and ṽ[i] = [ṽ
[i]
j ]. Let us compare the diagonally dominant parts of A(α, α)

and Ã[i](α, α). To this purpose observe that wj = w̃
[i]
j if j ∈ α \ {i},

wi = aii −
∑

j∈α\{i}

|aij | =

vi +
∑
j 6=i

|aij |

− ∑
j∈α\{i}

|aij | = vi +
∑
j /∈α

|aij | , (3.21)
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and, similarly, w̃
[i]
i = ṽ

[i]
i +

∑
j /∈α

|ã[i]ij |. Thus, we have

|w̃[i]
i − wi| =

∣∣∣∣∣∣ṽ[i]i − vi +
∑
j /∈α

(
|ã[i]ij | − |aij |

)∣∣∣∣∣∣ ≤ |ṽ[i]i − vi|+
∑
j /∈α

∣∣∣ã[i]ij − aij∣∣∣ . (3.22)

If p ∈ α, then (3.6) and (3.8) imply

|w̃[i]
i − wi| ≤ εvi +

∑
j /∈α

ε|aij | = ε

vi +
∑
j /∈α

|aij |

 = εwi.

Since wi ≥ vi, by (3.21), the off-diagonal entries of Ã[i](α, α) and A(α, α) satisfy
conditions (3.7)-(3.8) for their parameters. Therefore, we can apply Lemma 3.6 to
Ã[i](α, α) and A(α, α) to obtain that, if p ∈ α, then

det Ã[i](α, α) = (detA(α, α))(1 + δ
(α)
i )

with |δ(α)i | ≤ 3ε. If p /∈ α, then, from (3.22) and (3.6)-(3.7)-(3.8), we get

|w̃[i]
i − wi| ≤ |ṽ

[i]
i − vi|+

∑
j /∈α,j 6=p

∣∣∣ã[i]ij − aij∣∣∣+ |ã[i]ip − aip|

≤ εvi +
∑

j /∈α,j 6=p

ε|aij |+ ε(vi + |aip|)

= 2εvi +
∑
j /∈α

ε|aij | ≤ 2εwi .

Again, the off-diagonal entries of Ã[i](α, α) and A(α, α) satisfy (3.7)-(3.8) for their
parameters. So, we can apply Lemma 3.6 to Ã[i](α, α) and A(α, α), but this time
with ε replaced by 2ε, which requires 2ε < 1, to obtain

det Ã[i](α, α) = (detA(α, α))(1 + δ
(α)
i )

with |δ(α)i | ≤ 6ε, for p /∈ α. This proves (3.19).
Finally, we prove (3.20). To this purpose, consider that the perturbed submatrix

Ã(α, α) can be obtained from A(α, α) by a sequence of “only one row” at a time
perturbations. By (3.19), each of these “only one row” perturbations produces a
determinant that is equal to the determinant before the perturbation times a factor
1 + η, with |η| ≤ 6ε if p /∈ α and |η| ≤ 3ε if p ∈ α.

The next lemma considers the variation of certain non-principal minors of a row
diagonally dominant matrix A under the structured perturbations defined in (3.6)-
(3.7)-(3.8). It generalizes [14, Lemma 7] which assumes the standard perturbation
condition (3.2). In this lemma, observe that the last row of these minors corresponds
precisely to the fixed index p appearing in (3.6)-(3.7)-(3.8). Also, the minors of A
that are of interest are denoted as in (3.4), that is,

g(k+1)
pq = detA([1 : k, p], [1 : k, q]), (3.23)

for 1 ≤ k ≤ n− 1 and k + 1 ≤ p, q ≤ n. We also denote by
(
g̃[i]
)(k+1)

pq
and g̃

(k+1)
pq the

corresponding minors of the perturbed matrices Ã[i] and Ã, respectively, which were
defined in Lemmas 3.6 and 3.7.
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Lemma 3.8. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(ÃD, ṽ) ∈ Rn×n satisfy (3.6)-(3.7)-(3.8) with 0 ≤ ε < 1/2. Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i])
∈ Rn×n is a matrix that differs from A in only the ith row and whose ith row is the
same as the ith row of Ã. Let 1 ≤ k ≤ n − 2, k + 1 ≤ p, q ≤ n, and p 6= q, where
p is the fixed index in (3.6)-(3.7)-(3.8). Then, the following statements hold for the
minors in (3.23):

(a)

∣∣∣∣(g̃[i])(k+1)

pq
− g(k+1)

pq

∣∣∣∣ ≤
{

0, if i /∈ {1 : k, p}
4εg

(k+1)
pp , if i ∈ {1 : k, p}

;

(b)
∣∣∣g̃(k+1)
pq − g(k+1)

pq

∣∣∣ ≤ 4

3

(
(1 + 3ε)k+1 − 1

)
g(k+1)
pp .

Proof. Let A = [ajk], Ã[i] = [ã
[i]
jk], Ã = [ãjk], v = [vj ], ṽ

[i] = [ṽ
[i]
j ], and ṽ = [ṽj ].

We prove first part (a) for i ∈ {1 : k, p}, as the case i /∈ {1 : k, p} is trivial. For
j ∈ {1 : k, q}, let Gij be the algebraic cofactor of A([1 : k, p], [1 : k, q]) for the entry

aij , and note that this is also the algebraic cofactor of Ã[i]([1 : k, p], [1 : k, q]) for the

entry ã
[i]
ij .

If 1 ≤ i ≤ k, applying Lemma 3.5 yields

(
g̃[i]
)(k+1)

pq
=

ṽ[i]i +
∑

j /∈{1:k,q}

|ã[i]ij |

Gii +
∑

j∈{1:k,q}\{i}

(
ã
[i]
ijGij + |ã[i]ij |Gii

)

=

ṽi +
∑

j /∈{1:k,p,q}

|ãij |

Gii + |ãip|Gii +
∑

j∈{1:k,q}\{i}

(ãijGij + |ãij |Gii) .

Similarly, we have

g(k+1)
pq =

vi +
∑

j /∈{1:k,p,q}

|aij |

Gii + |aip|Gii +
∑

j∈{1:k,q}\{i}

(aijGij + |aij |Gii) .

Using (3.9) and (3.11), we can write

(
g̃[i]
)(k+1)

pq
= g(k+1)

pq +

viφi +
∑

j /∈{1:k,p,q}

φij |aij |

Gii

+
∑

j∈{1:k,q}\{i}

φij (aijGij + |aij |Gii) + (|ãip| − |aip|)Gii .
(3.24)

Therefore, using (3.7), we get∣∣∣∣(g̃[i])(k+1)

pq
− g(k+1)

pq

∣∣∣∣ ≤ ε
[vi +

∑
j /∈{1:k,p,q}

|aij |

 |Gii|
+

∑
j∈{1:k,q}\{i}

|aijGij + |aij |Gii|+ |aip||Gii|+ vi|Gii|

]

≤ 2ε

vi +
∑

j /∈{1:k,q}

|aij |

 |Gii|+ ∑
j∈{1:k,q}\{i}

|aijGij + |aij |Gii|


≤ 4εg(k+1)

pp ,
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where Lemma 3.5 has been used in the last inequality. This proves part (a) for
1 ≤ i ≤ k.

Now, for i = p, use Lemma 3.5 and (3.11) to obtain(
g̃[p]
)(k+1)

pq
=

∑
j∈{1:k,q}

ã
[p]
pjGpj =

∑
j∈{1:k,q}

apj(1 + φpj)Gpj

=
∑

j∈{1:k,q}

apjGpj +
∑

j∈{1:k,q}

φpjapjGpj = g(k+1)
pq +

∑
j∈{1:k,q}

φpjapjGpj .

Thus, ∣∣∣∣(g̃[p])(k+1)

pq
− g(k+1)

pq

∣∣∣∣ ≤ ε ∑
j∈{1:k,q}

|apjGpj | ≤ ε(2g(k+1)
pp ), (3.25)

where Lemma 3.5 has been used again in the last inequality. This proves part (a) for
i = p and completes the whole proof of this part.

For part (b), consider obtaining Ã from A by a sequence of only one row at a time
perturbations. Note that each matrix in this sequence is row diagonally dominant

with nonnegative diagonals. The variation in g
(k+1)
pq is a consequence only of the

perturbations of rows with indices in {1 : k, p}. Let α be a subset of {1 : k, p} and

denote by (g̃α)
(k+1)
pq the minor corresponding to a matrix obtained from A through

perturbations in the rows with indices in α only. Thus∣∣∣g̃(k+1)
pq − g(k+1)

pq

∣∣∣ =

∣∣∣∣(g̃{1:k,p})(k+1)

pq
− g(k+1)

pq

∣∣∣∣
≤
∣∣∣∣(g̃{1:k,p})(k+1)

pq
−
(
g̃{1:k}

)(k+1)

pq

∣∣∣∣+ · · ·+
∣∣∣∣(g̃{1})(k+1)

pq
− g(k+1)

pq

∣∣∣∣ .
Apply part (a) to each term in this sum to obtain,∣∣∣g̃(k+1)

pq − g(k+1)
pq

∣∣∣ ≤ 4ε

[(
g̃{1:k}

)(k+1)

pp
+ · · ·+ g(k+1)

pp

]
and then apply Lemma 3.7 to each term in the sum above to get∣∣∣g̃(k+1)

pq − g(k+1)
pq

∣∣∣ ≤ 4ε
[
(1 + 3ε)k + · · ·+ 1

]
g(k+1)
pp =

4

3

(
(1 + 3ε)k+1 − 1

)
g(k+1)
pp .

Lemma 3.11 later establishes a new perturbation bound for minors of row diago-
nally dominant matrices A and Ã satisfying the standard perturbation (3.2). It is the
key lemma towards the proof of our main result, i.e., Theorem 3.2. Its proof involves
construction from A and Ã, via some elementary column operations, two new row
diagonally dominant matrices with nonnegative diagonals B and B̃ ∈ R(k+2)×(k+2).
We first show in Lemma 3.9 below, after considerable efforts, that B and B̃ satisfy
the generalized perturbation conditions (3.6)-(3.7)-(3.8). We warn the reader that
the proof of Theorem 3.2 relies on applying Lemma 3.8 to the matrices B and B̃.
As B is constructed from A, we label the k + 2 rows and columns of B using the
indices {1 : k, p, q}. While not traditional, this labeling is useful because we can
easily compare entries in B to entries in A. Thus, the (k + 1)th row and column of
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B correspond to the pth row and column of A and similarly the (k + 2)nd row and
column of B correspond to the qth row and column of A. Note also that in Lemma
3.9 the condition ε < 1/5 is imposed with the only purpose of guaranteeing δ < 1/2
in (3.29)-(3.30)-(3.31), which is necessary to apply Lemma 3.8 to B and B̃.

Lemma 3.9. Let A = [aij ] = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let

Ã = [ãij ] = D(ÃD, ṽ) ∈ Rn×n be a matrix that satisfies

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1

5
. (3.26)

Let A(k+1) = [a
(k+1)
ij ] ∈ Rn×n be the matrix obtained after k stages of Gaussian elim-

ination have been performed on A and, for a fixed index p such that k+1 ≤ p ≤ n, let

sj = sign(a
(k+1)
pj ) for j = 1, . . . , n. Let 1 ≤ k ≤ n− 2 and let B = [bij ] ∈ R(k+2)×(k+2)

be a matrix whose rows and columns are indexed by i, j ∈ {1, 2, · · · , k, p, q} and is
defined as followsbij = aij , for i ∈ {1 : k, p, q} and j ∈ {1 : k, q}

bip = aip −
∑

j /∈{1:k,p,q}
sjaij , for i ∈ {1 : k, p, q} . (3.27)

Similarly, let B̃ = [b̃ij ] ∈ R(k+2)×(k+2) be defined byb̃ij = ãij , for i ∈ {1 : k, p, q} and j ∈ {1 : k, q}
b̃ip = ãip −

∑
j /∈{1:k,p,q}

sj ãij , for i ∈ {1 : k, p, q} . (3.28)

Then B and B̃ are row diagonally dominant matrices with nonnegative diagonal
entries. In addition, B and B̃ can be parameterized as B = D(BD, w) and B̃ =
D(B̃D, w̃) and satisfy

|w̃ − w| ≤ δw , (3.29)

|b̃ip − bip| ≤ δ(wi + |bip|) , for i ∈ {1 : k, q}, and , (3.30)

|b̃ij − bij | ≤ δ |bij | , for i 6= j, i ∈ {1 : k, p, q}, j ∈ {1 : k, q}, (3.31)

where δ =
2ε

1− ε
.

Proof. Using that A is row diagonally dominant and has nonnegative diagonal
entries, we have for i ∈ {1 : k, q}

∑
j∈{1:k,p,q}\{i}

|bij | =
∑

j∈{1:k,q}\{i}

|bij |+ |bip| =
∑

j∈{1:k,q}\{i}

|aij |+

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
≤

∑
j∈{1:k,q}\{i}

|aij |+ |aip|+
∑

j /∈{1:k,p,q}

|aij | =
∑
j 6=i

|aij | ≤ aii = bii ,

and, for i = p,∑
j∈{1:k,q}

|bpj | =
∑

j∈{1:k,q}

|apj | =
∑
j 6=p

|apj | −
∑

j /∈{1:k,p,q}

|apj |

≤
∑
j 6=p

|apj | −
∑

j /∈{1:k,p,q}

sjapj ≤ app −
∑

j /∈{1:k,p,q}

sjapj = bpp .
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Hence, B is row diagonally dominant with nonnegative diagonals. Using the same
argument, the row diagonal dominance of Ã, and ãii ≥ 0, we can show that B̃ is row
diagonally dominant with nonnegative diagonals as well. Thus, we can parameterize
B and B̃ in terms of their diagonally dominant parts and off-diagonal entries. Let
B = D(BD, w) and B̃ = D(B̃D, w̃) with w = [wi] and w̃ = [w̃i] ∈ Rk+2. Now, note
that, for i ∈ {1 : k, p, q}, j ∈ {1 : k, q}, and i 6= j, we have

|b̃ij − bij | = |ãij − aij | ≤ ε|aij | = ε|bij |,

and, for i ∈ {1 : k, q} and j = p, we use |aip| ≤ |aip|+ vi to get

|b̃ip − bip| =

∣∣∣∣∣∣
ãip − ∑

j /∈{1:k,p,q}

sj ãij

−
aip − ∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
≤ |ãip − aip|+

∑
j /∈{1:k,p,q}

|ãij − aij | ≤ ε (|aip|+ vi) + ε
∑

j /∈{1:k,p,q}

|aij |

= ε

 ∑
j /∈{1:k,q}

|aij |+ vi

 = ε

 ∑
j /∈{1:k,q}

|aij |+ aii −
∑
j 6=i

|aij |


= ε

aii − ∑
j∈{1:k,q}\{i}

|aij |

 = ε

bii − ∑
j∈{1:k,q}\{i}

|bij |


= ε

bii − ∑
j∈{1:k,p,q}\{i}

|bij |+ |bip|

 = ε(wi + |bip|).

Thus, we have proved (3.30)-(3.31) for the off-diagonal entries of B and B̃. Now we
focus on the diagonally dominant parts. Let i ∈ {1 : k, q} and observe

wi = bii −
∑

j∈{1:k,p,q}\{i}

|bij | = bii −
∑

j∈{1:k,q}\{i}

|bij | − |bip|

= aii −
∑

j∈{1:k,q}\{i}

|aij | −

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
= vi +

∑
j /∈{1:k,q}

|aij | −

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
= vi +

∑
j /∈{1:k,p,q}

|aij |+ |aip| −

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣ . (3.32)

Similarly, we have

w̃i = ṽi +
∑

j /∈{1:k,p,q}

|ãij |+ |ãip| −

∣∣∣∣∣∣ãip −
∑

j /∈{1:k,p,q}

sj ãij

∣∣∣∣∣∣ . (3.33)

Next, we will consider two cases.
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Case 1: sign

(
aip −

∑
j /∈{1:k,p,q}

sjaij

)
= sign

(
ãip −

∑
j /∈{1:k,p,q}

sj ãij

)
=: θ. Then,

w̃i = ṽi +
∑

j /∈{1:k,p,q}

|ãij |+ |ãip| − θ

ãip − ∑
j /∈{1:k,p,q}

sj ãij


= ṽi +

∑
j /∈{1:k,p,q}

|ãij |+ |ãip| − θãip + θ
∑

j /∈{1:k,p,q}

sj ãij

= ṽi +
∑

j /∈{1:k,p,q}

|ãij |(1 + θsjsign(ãij)) + |ãip|(1− θ sign(ãip))

= ṽi +
∑

j /∈{1:k,p,q}

|ãij |(1 + θsjsign(aij)) + |ãip|(1− θ sign(aip)),

where we have used that sign(ãij) = sign(aij) for all j 6= i. Similarly, we have

wi = vi +
∑

j /∈{1:k,p,q}

|aij |(1 + θsjsign(aij)) + |aip|(1− θ sign(aip))

and, hence,

|w̃i − wi| ≤ |ṽi − vi|+
∑

j /∈{1:k,p,q}

∣∣ãij − aij∣∣(1 + θsjsign(aij))

+
∣∣ãip − aip∣∣(1− θsign(aip))

≤ εvi + ε
∑

j /∈{1:k,p,q}

|aij |(1 + θsjsign(aij)) + ε|aip|(1− θ sign(aip))

≤ εwi . (3.34)

Case 2: sign

(
aip −

∑
j /∈{1:k,p,q}

sjaij

)
6= sign

(
ãip −

∑
j /∈{1:k,p,q}

sj ãij

)
. In this case,

∣∣∣∣∣∣ãip −
∑

j /∈{1:k,p,q}

sj ãij

∣∣∣∣∣∣ +

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ãip − ∑

j /∈{1:k,p,q}

sj ãij

−
aip − ∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
≤ |ãip − aip|+

∑
j /∈{1:k,p,q}

|ãij − aij |

≤ ε|aip|+ ε
∑

j /∈{1:k,p,q}

|aij | , (3.35)
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which, combined with (3.32) and (3.33), yields

|w̃i − wi| =

∣∣∣∣∣∣
ṽi +

∑
j /∈{1:k,q}

|ãij | −
∣∣∣ãip − ∑

j /∈{1:k,p,q}

sj ãij

∣∣∣


−

vi +
∑

j /∈{1:k,q}

|aij | −
∣∣∣aip − ∑

j /∈{1:k,p,q}

sjaij

∣∣∣
∣∣∣∣∣∣

≤ |ṽi − vi|+
∑

j /∈{1:k,q}

||ãij | − |aij ||

+

∣∣∣∣∣∣ãip −
∑

j /∈{1:k,p,q}

sj ãij

∣∣∣∣∣∣+

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣
≤ εvi + ε

∑
j /∈{1:k,q}

|aij |+ ε
∑

j /∈{1:k,q}

|aij |

≤ 2ε

vi +
∑

j /∈{1:k,q}

|aij |

 . (3.36)

So, from (3.32) and (3.35),

wi = vi +
∑

j /∈{1:k,q}

|aij | −

∣∣∣∣∣∣aip −
∑

j /∈{1:k,p,q}

sjaij

∣∣∣∣∣∣ ≥ vi +
∑

j /∈{1:k,q}

|aij | − ε
∑

j /∈{1:k,q}

|aij |

≥ (1− ε)

vi +
∑

j /∈{1:k,q}

|aij |

 .

Combining this inequality and (3.36), we have

|w̃i − wi| ≤
2ε

1− ε
wi. (3.37)

The inequalities (3.34) and (3.37) prove the bound (3.29) for wi with i ∈ {1 : k, q}.
Finally, we prove (3.29) for i = p. Note that

wp = bpp −
∑

j∈{1:k,q}

|bpj | = app −
∑

j /∈{1:k,p,q}

sjapj −
∑

j∈{1:k,q}

|apj |

= vp +
∑
j 6=p

|apj | −
∑

j /∈{1:k,p,q}

sjapj −
∑

j∈{1:k,q}

|apj |

= vp +
∑

j /∈{1:k,p,q}

|apj | −
∑

j /∈{1:k,p,q}

sjapj = vp +
∑

j /∈{1:k,p,q}

(|apj | − sjapj)

= vp +
∑

j /∈{1:k,p,q}

|apj |(1− sjsign(apj)) .

Similarly, we have

w̃p = ṽp +
∑

j /∈{1:k,p,q}

|ãpj |(1− sjsign(ãpj)) = ṽp +
∑

j /∈{1:k,p,q}

|ãpj |(1− sjsign(apj)) ,
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since sign(ãpj) = sign(apj). Thus,

|w̃p − wp| ≤ |ṽp − vp|+
∑

j /∈{1:k,p,q}

|ãpj − apj |(1− sjsign(apj))

≤ εvp + ε
∑

j /∈{1:k,p,q}

|apj |(1− sjsign(apj)) = εwp .

So, we have that |w̃i − wi| ≤
2ε

1− ε
wi for all i ∈ {1 : k, p, q}. Lemma 3.9 is proved.

The next lemma relates one of the minors of the matrix B defined in Lemma 3.9
with one minor of A. In the statement, we use the notation introduced in (3.4).

Lemma 3.10. Let A and B be defined as in Lemma 3.9 and define

(gB)
(k+1)
pp := detB([1 : k, p], [1 : k, p]) .

Then, we have

(a) If g
(k)
kk 6= 0, let A(k+1) = [a

(k+1)
ij ] be the row diagonally dominant matrix with

nonnegative diagonal entries obtained after k stages of Gaussian elimina-
tion have been performed on A, and let A(k+1) be parameterized as A(k+1) =

D(A
(k+1)
D , v(k+1)), with v(k+1) = [v

(k+1)
i ]. Then

(gB)
(k+1)
pp =

(
v(k+1)
p +

∣∣∣a(k+1)
pq

∣∣∣) g(k)kk .

(b) If g
(k)
kk = 0, then (gB)

(k+1)
pp = 0.

Proof. Observe that B([1 : k, p], [1 : k, p]) and A([1 : k, p], [1 : k, p]) have columns
1 through k equal and for the last column, we have

B([1 : k, p], p) = A([1 : k, p], p)−
∑

j /∈{1:k,p,q}

sj A([1 : k, p], j) .

Using the fact that the determinant is a linear function of any of its columns, assuming
that the remaining columns are fixed, we obtain

(gB)
(k+1)
pp = detA([1 : k, p], [1 : k, p])−

∑
j /∈{1:k,p,q}

sj detA([1 : k, p], [1 : k, j]) .

If g
(k)
kk = detA(1 : k, 1 : k) 6= 0, then

(gB)
(k+1)
pp = g

(k)
kk

detA([1 : k, p], [1 : k, p])

detA(1 : k, 1 : k)
−

∑
j /∈{1:k,p,q}

sj
detA([1 : k, p], [1 : k, j])

detA(1 : k, 1 : k)

 .

By (2.5),

(gB)
(k+1)
pp = g

(k)
kk

a(k+1)
pp −

∑
j /∈{1:k,p,q}

sja
(k+1)
pj

 = g
(k)
kk

a(k+1)
pp −

∑
j /∈{1:k,p,q}

|a(k+1)
pj |

 .

Since, a
(k+1)
pj = 0 for 1 ≤ j ≤ k, we get

(gB)
(k+1)
pp = g

(k)
kk

a(k+1)
pp −

∑
j 6=p

|a(k+1)
pj |+ |a(k+1)

pq |

 = g
(k)
kk

(
v(k+1)
p +

∣∣∣a(k+1)
pq

∣∣∣) ,
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which proves part (a). Next, we prove part (b). If g
(k)
kk = detA(1 : k, 1 : k) = 0, then

one of the pivots a
(j)
jj , for 1 ≤ j ≤ k, in the Gaussian elimination for A must be 0.

Since A(j) is still row diagonally dominant, then the jth row of A(j) must be entirely
0. Then applying j−1 stages of Gaussian elimination to the row diagonally dominant
matrix B([1 : k, p], [1 : k, p]) produces also a zero jth pivot and the jth row is also

entirely 0. Hence (gB)
(k+1)
pp = detB([1 : k, p], [1 : k, p]) = 0.

We now present Lemma 3.11 that establishes a different bound than the one in
[14, Lemma 7(b)] for the perturbation of the non-principal minors defined in (3.4)
under the standard perturbations defined in (3.2). This lemma is a consequence of
the considerable effort we have done so far on studying structured perturbations of
minors of row diagonally dominant matrices. It will allow us to prove Theorem 3.2.

Lemma 3.11. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =
D(ÃD, ṽ) ∈ Rn×n be a matrix that satisfies

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1

5
. (3.38)

Let 1 ≤ k ≤ n− 2, k + 1 ≤ p, q ≤ n, and p 6= q. Then, we have

(a) If g
(k)
kk 6= 0, let A(k+1) = [a

(k+1)
ij ] = D(A

(k+1)
D , v(k+1)), with v(k+1) = [v

(k+1)
i ],

be the row diagonally dominant matrix with nonnegative diagonal entries ob-
tained after k stages of Gaussian elimination have been performed on A. Then∣∣∣g̃(k+1)

pq − g(k+1)
pq

∣∣∣ ≤ 4

3

(
(1 + ε0)k+1 − 1

) (
v(k+1)
p +

∣∣∣a(k+1)
pq

∣∣∣) g(k)kk ,

where ε0 =
6ε

1− ε
.

(b) If g
(k)
kk = 0, then g̃

(k+1)
pq = g

(k+1)
pq = 0.

Proof. Suppose g
(k)
kk 6= 0. Define B and B̃ as in Lemma 3.9. By (3.29)-(3.30)-

(3.31), we can apply Lemma 3.8 to the minors of B and B̃ defined in (3.23) to obtain∣∣∣(g̃B)
(k+1)
pq − (gB)

(k+1)
pq

∣∣∣ ≤ 4

3

(
(1 + 3δ)k+1 − 1

)
(gB)

(k+1)
pp , (3.39)

with δ = 2ε/(1− ε). By the construction of B and B̃, we have

(g̃B)
(k+1)
pq = g̃(k+1)

pq and (gB)
(k+1)
pq = g(k+1)

pq ,

and hence, from (3.39),∣∣∣g̃(k+1)
pq − g(k+1)

pq

∣∣∣ ≤ 4

3

(
(1 + 3δ)k+1 − 1

)
(gB)

(k+1)
pp . (3.40)

Next, apply Lemma 3.10(a) to get∣∣∣g̃(k+1)
pq − g(k+1)

pq

∣∣∣ ≤ 4

3

(
(1 + 3δ)k+1 − 1

) (
v(k+1)
p +

∣∣∣a(k+1)
pq

∣∣∣) g(k)kk ,

which proves part (a).

Next we prove part (b). We have seen in the proof of Lemma 3.10 that g
(k)
kk = 0

implies that one of the pivots a
(j)
jj (for 1 ≤ j ≤ k) in the Gaussian elimination for A

must be 0. Since A(j) is still row diagonally dominant, the jth row of A(j) must be
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entirely 0. Then applying j − 1 stages of the Gaussian elimination to A([1 : k, p], [1 :

k, q]) produces a jth row which is entirely 0 and hence g
(k+1)
pq = 0. Furthermore, by

equation (3.20) in Lemma 3.7, we have that g
(k)
kk = 0 implies g̃

(k)
kk = 0 and the same

argument we have used above for A can be used on Ã to prove g̃
(k+1)
pq = 0.

The results presented so far in Section 3.1 are valid for general row diagonally
dominant matrices with nonnegative diagonal. From now on, we assume that the
matrix A is arranged for column diagonal dominance pivoting. This allows us to
bound the sum of the absolute values of the entries below the diagonal of each column
of the L factor in terms of the diagonally dominant parts of the corresponding Schur
complement and the corresponding pivot, as seen in Lemma 3.12.

Lemma 3.12. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and assume that
A is arranged for the column diagonal dominance pivoting strategy. Let A(k) =

D(A
(k)
D , v(k)), with A(k) = [a

(k)
ij ] and v(k) = [v

(k)
i ], be the row diagonally dominant

matrix with nonnegative diagonal entries obtained after k − 1 stages of Gaussian
elimination have been applied on A. Then, for k ≤ rank(A), we have

n∑
i=k+1

(
|a(k)ik |+ v

(k)
i

)
≤ (n− k) a

(k)
kk .

Proof. According to (2.6), define δ
(k)
i := a

(k)
ii −

n∑
j=k,j 6=i

|a(k)ji |. Then, we have

a
(k)
kk = max

k≤i≤n

{
a
(k)
ii : δ

(k)
i ≥ 0

}
.

If δ
(k)
i ≥ 0 for all i = k + 1, . . . , n, then

n∑
i=k+1

(
|a(k)ik |+ v

(k)
i

)
≤

n∑
i=k+1

a
(k)
ii ≤

n∑
i=k+1

a
(k)
kk ≤ (n− k)a

(k)
kk ,

which proves the result in this case. Otherwise, if there is at least one δ
(k)
i < 0 for

some i = k + 1, . . . , n, then from the definition of v
(k)
i we obtain for k + 1 ≤ i ≤ n

|a(k)ik |+ v
(k)
i = a

(k)
ii −

n∑
j=k+1,j 6=i

|a(k)ij |

and sum over i to obtain,

n∑
i=k+1

(
|a(k)ik |+ v

(k)
i

)
=

n∑
i=k+1

a
(k)
ii −

n∑
i=k+1

n∑
j=k+1,j 6=i

|a(k)ij | =
n∑

i=k+1

a
(k)
ii −

n∑
i=k+1

n∑
j=k+1,j 6=i

|a(k)ji |

=

n∑
i=k+1

a(k)ii −
n∑

j=k+1,j 6=i

|a(k)ji |

 =

n∑
i=k+1

a(k)ii −
n∑

j=k,j 6=i

|a(k)ji |+ |a
(k)
ki |


=

n∑
i=k+1

(
δ
(k)
i + |a(k)ki |

)
≤ a(k)kk +

n∑
i=k+1

δ
(k)
i
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≤ a(k)kk +

n∑
i=k+1,δ

(k)
i ≥0

δ
(k)
i ≤ a(k)kk +

n∑
i=k+1,δ

(k)
i ≥0

a
(k)
ii

≤ a(k)kk +

n∑
i=k+1,δ

(k)
i ≥0

a
(k)
kk ≤ a

(k)
kk + (n− k − 1) a

(k)
kk

= (n− k) a
(k)
kk ,

since for δ
(k)
i ≥ 0, δ

(k)
i ≤ a(k)ii ≤ a

(k)
kk .

Finally, we are now ready to present the proof of Theorem 3.2.
Proof of Theorem 3.2. As a consequence of Theorem 3.1(a), we have rank(A) =

rank(Ã). Therefore, from Definition 2.4, it is observed that we only need to pay
attention to the variation of the strictly lower triangular entries of L in its first r :=
rank(A) columns. Using (2.2), Lemma 3.11(a) with p = i, q = j and k = j − 1, and
[14, Lemma 4(b)], we have for i > j and 1 ≤ j ≤ r

l̃ij =
g̃
(j)
ij

g̃
(j)
jj

=
g
(j)
ij + 4

3χ(v
(j)
i + |a(j)ij | )g

(j−1)
j−1,j−1

g
(j)
jj (1 + ξ1) · · · (1 + ξj)

, (3.41)

where |ξ1| ≤ ε, . . . , |ξj | ≤ ε, and |χ| ≤ ((1 + ε0)j − 1). Define

ζ :=
1

(1 + ξ1) · · · (1 + ξj)
− 1

and note |ζ| ≤ 1

(1− ε)j
− 1. Hence, from (3.41) and (2.5),

l̃ij =

(
lij +

4
3χ(v

(j)
i + |a(j)ij | )

a
(j)
jj

)
(1 + ζ) and l̃ij − lij = ζlij +

4
3χ(1 + ζ)(v

(j)
i + |a(j)ij | )

a
(j)
jj

.

Taking the absolute value gives

|l̃ij − lij | ≤ |ζ||lij |+
4

3
|χ||1 + ζ|

v
(j)
i + |a(j)ij |

a
(j)
jj

,

and then summing over i yields

n∑
i=j+1

|l̃ij − lij | ≤ |ζ|
n∑

i=j+1

|lij |+
4

3
|χ||1 + ζ|

n∑
i=j+1

(v
(j)
i + |a(j)ij |)

a
(j)
jj

. (3.42)

By assumption A is arranged for column diagonal dominance pivoting, which means
that the matrix L is column diagonally dominant, that is,∑n
i=j+1 |lij | ≤ 1 for all j. Use this fact and Lemma 3.12 in (3.42) to get, for 1 ≤ j ≤ r,

n∑
i=j+1

|l̃ij − lij | ≤ |ζ|+
4

3
|χ||1 + ζ|

(n− 1)a
(j)
jj

a
(j)
jj

= |ζ|+ 4

3
(n− 1)|χ||1 + ζ|

≤
(

1

(1− ε)n
− 1

)
+

4

3
(n− 1) ((1 + ε0)

n − 1)
1

(1− ε)n

≤ n(4n− 1)ε0
3(1− 2nε0)

=
2n (4n− 1) ε

1− (12n+ 1) ε
,
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where we have used ε < ε0 = 6ε/(1 − ε), standard results from [24, Ch. 3], and
(12n+ 1) ε < 1. Now, Theorem 3.2 follows from observing that

‖L̃− L‖1 = max
1≤j≤(n−1)

n∑
i=j+1

|l̃ij − lij |. �

4. Conclusions and future work. We have proved that small componentwise
relative perturbations in the diagonally dominant parts and off-diagonal entries of
row diagonally dominant matrices with nonnegative diagonal entries produce small
relative normwise perturbations in the L factor obtained by applying the column
diagonal dominance pivoting strategy to this type of matrices. This result combined
with the perturbation results for the D and U factors presented in [14] show that the
column diagonal dominance pivoting strategy for row diagonally dominant matrices
leads, simultaneously, to LDU factorizations that are guaranteed to be rank revealing
decompositions, i.e., the factors L and U are guaranteed to have small condition
numbers, and that always undergo small relative perturbations under the structured
perturbations considered in this work. The perturbation results presented in this
paper are fundamental to prove in [10] that essentially all interesting magnitudes
corresponding to row diagonally dominant matrices undergo small relative variations
under small relative perturbations in the diagonally dominant parts and off-diagonal
entries and, therefore, that these magnitudes can be computed with high accuracy by
algorithms based on rank revealing decompositions [5, 11, 15, 17, 39].
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tions that have helped us to improve this manuscript.
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